ModLab UPenn the modular robotics laboratory at the university of pennsylvania

Tarik Tosun

Tarik Tosun
Position: Ph.D Student

Research Interests: Modular Robotics

Office: Pennovation Center, 3rd Floor

Email: tarikt at

Personal Page



The EP-Face Connector

We present the EP-Face connector, a novel connector for hybrid chain-lattice type modular robots that is high- strength (88.4N), compact, fast, power efficient, and robust to position errors.

An End-to-End System for Accomplishing Tasks with Modular Robots

Best Systems Paper, RSS 2016.  In this paper, we present an end-to-end system for addressing tasks with modular robots, and demonstrate that it is capable of accomplishing challenging multi-part tasks in hardware experiments.


SMORES-EP is a modular robot designed and built at the University of Pennsylvania, and used by researchers at Penn and Cornell. SMORES stands for Self-Assembling MOdular Robot for Extreme Shapeshifting, and EP refers to the Electro-Permanent magnets the modules use to connect.

Computer-Aided Compositional Design and Verification for Modular Robots

To take full advantage of the flexibility of a modular robot system, users must be able to create and verify new configurations and behaviors quickly. We have developed a design framework that facilitates rapid creation of new configurations and behaviors through composition of existing ones, and tools to verify configurations and behaviors as they are […]

Modular Robot Design Embedding

We have developed an algorithm that automatically detects embeddability of modular robot configurations. Simply put, a given design embeds another design if it can replicate its structure, and therefore simulate its functionality. We introduce a novel graph representation for modular robots, and formalize the notion of embedding through topological and kinematic conditions. Our algorithm involves […]

Tactically Expandable Maritime Platform (T.E.M.P.)

We have built a system of shipping container sized robotic boats that can hook onto each other.  We demonstrate the conceptual design of a system that is capable of constructing bridges and various shaped islands that can be made compliant to waves.