ModLab UPenn the modular robotics laboratory at the university of pennsylvania

Modular Robots
Autonomous Modular Robots
Autonomous Modular Robots

The theoretical ability of modular robots to reconfigure in response to complex tasks in a priori unknown environments has frequently been cited as an advantage and remains a major motivator for work in the field. We present a modular robot system capable of autonomously completing high-level tasks by reactively reconfiguring to meet the needs of […]

Environment Augmentation with Modular Robots
Environment Augmentation with Modular Robots

We present a system enabling a modular robot to autonomously build structures in order to accomplish high-level tasks.  Building structures allows the robot to surmount large obstacles, expanding the set of tasks it can perform. This addresses a common weakness of modular robot systems, which often struggle to traverse large obstacles. This paper presents the […]

A Flying Gripper Based on Cuboid Modular Robots
A Flying Gripper Based on Cuboid Modular Robots

Grasping objects is a hard task that usually implies a dedicated mechanism (e.g arm, gripper) to the robot. Instead of adding extra components, have you thought about embedding the grasping capability to the robot itself? Have you also thought about whether we could do it flying? In the GRASP Laboratory at the University of Pennsylvania, […]

ModQuad: The Flying Structure that Self-Assembles in Midair
ModQuad: The Flying Structure that Self-Assembles in Midair

Modular robots can adapt and offer solutions in emergency scenarios, but self-assembling on the ground is a slow process. What about self-assembling in midair? In one of our recent work in GRASP Laboratory at University of Pennsylvania, we introduce ModQuad, a novel flying modular robotic structure that is able to self-assemble in midair and cooperatively […]

Variable Topology Truss
Variable Topology Truss

Variable Topology Trusses (VTT) are a new class of self-reconfigurable robot. A VTT consists of linear actuators for the truss members, which are joined at the truss nodes by a special reconfigurable spherical joint. The VTT can reconfigure by merging and splitting these truss nodes.

A Decentralized Algorithm for Self Assembling Structures with Modular Robots
A Decentralized Algorithm for Self Assembling Structures with Modular Robots

Recent work in the field of bio-inspired robotic systems has introduced designs for modular robots that are able to assemble into structures (e.g., bridges, landing platforms, fences) using their bodies as the building components. Yet, it remains an open question as to how to program large swarms of robotic modules so that the assembly task […]