ModLab UPenn the modular robotics laboratory at the university of pennsylvania

Posts Tagged ‘tariktosun’
Autonomous Modular Robots
Autonomous Modular Robots

The theoretical ability of modular robots to reconfigure in response to complex tasks in a priori unknown environments has frequently been cited as an advantage and remains a major motivator for work in the field. We present a modular robot system capable of autonomously completing high-level tasks by reactively reconfiguring to meet the needs of […]

Environment Augmentation with Modular Robots
Environment Augmentation with Modular Robots

We present a system enabling a modular robot to autonomously build structures in order to accomplish high-level tasks.  Building structures allows the robot to surmount large obstacles, expanding the set of tasks it can perform. This addresses a common weakness of modular robot systems, which often struggle to traverse large obstacles. This paper presents the […]

The EP-Face Connector
The EP-Face Connector

We present the EP-Face connector, a novel connector for hybrid chain-lattice type modular robots that is high- strength (88.4N), compact, fast, power efficient, and robust to position errors.

An End-to-End System for Accomplishing Tasks with Modular Robots
An End-to-End System for Accomplishing Tasks with Modular Robots

Best Systems Paper, RSS 2016.  In this paper, we present an end-to-end system for addressing tasks with modular robots, and demonstrate that it is capable of accomplishing challenging multi-part tasks in hardware experiments.

SMORES-EP
SMORES-EP

SMORES-EP is a modular robot designed and built at the University of Pennsylvania, and used by researchers at Penn and Cornell. SMORES stands for Self-Assembling MOdular Robot for Extreme Shapeshifting, and EP refers to the Electro-Permanent magnets the modules use to connect.

Computer-Aided Compositional Design and Verification for Modular Robots
Computer-Aided Compositional Design and Verification for Modular Robots

To take full advantage of the flexibility of a modular robot system, users must be able to create and verify new configurations and behaviors quickly. We have developed a design framework that facilitates rapid creation of new configurations and behaviors through composition of existing ones, and tools to verify configurations and behaviors as they are […]

Modular Robot Design Embedding
Modular Robot Design Embedding

We have developed an algorithm that automatically detects embeddability of modular robot configurations. Simply put, a given design embeds another design if it can replicate its structure, and therefore simulate its functionality. We introduce a novel graph representation for modular robots, and formalize the notion of embedding through topological and kinematic conditions. Our algorithm involves […]

Tactically Expandable Maritime Platform (T.E.M.P.)
Tactically Expandable Maritime Platform (T.E.M.P.)

We have built a system of shipping container sized robotic boats that can hook onto each other.  We demonstrate the conceptual design of a system that is capable of constructing bridges and various shaped islands that can be made compliant to waves.