ModLab UPenn the modular robotics laboratory at the university of pennsylvania

Home

Welcome to the Modular Robotics Lab (ModLab), a subgroup of the GRASP Lab and the Mechanical Engineering and Applied Mechanics Department at the University of Pennsylvania under the supervision of Prof. Mark Yim.

A modular robot is a versatile system consisting of many simple modules that can change their configuration to suit a given task. These systems are inherently robust due to their redundancy, adaptability, and ability to self-repair. While originally focused on continuing research in the field of modular robotics, recent work at the lab has expanded to include micro/nano air vehicles, bio-inspired gaits, personal robots, and more. The ModLab is comprised of undergraduate and graduate students from multiple disciplines including mechanical, electrical, and computer systems engineering.

Featured Projects

Variable Topology Truss

Variable Topology Trusses (VTT) are a new class of self-reconfigurable robot. A VTT consists of linear actuators for the truss members, which are joined at the truss nodes by a special reconfigurable spherical joint. The VTT can reconfigure by merging and splitting these truss nodes.

Piccolissimo

Piccolissimo is the smallest self-powered flying vehicle (to the best of our knowledge). Thanks to its passive stability, it can fly with only one actuator. This makes it simple and low cost to construct and less likely to have a component fail.

SMORES-EP

SMORES-EP is a modular robot designed and built at the University of Pennsylvania, and used by researchers at Penn and Cornell. SMORES stands for Self-Assembling MOdular Robot for Extreme Shapeshifting, and EP refers to the Electro-Permanent magnets the modules use to connect.

Recent Projects

Spiral Zipper Manipulator for Aerial Grasping and Manipulation

We present a novel manipulator for aerial vehicles to perform grasping and manipulation tasks. The goal is to design a low-cost, relatively light but strong manipulator with a large workspace and compact storage space that can be mounted on an unmanned aerial system. A novel design solution based on the Spiral Zipper, an expanding tube, […]

Variable Topology Truss

Variable Topology Trusses (VTT) are a new class of self-reconfigurable robot. A VTT consists of linear actuators for the truss members, which are joined at the truss nodes by a special reconfigurable spherical joint. The VTT can reconfigure by merging and splitting these truss nodes.

Reconfiguration Motion Planning for Variable Topology Truss

This work presents an algorithm to do motion planning for a new class of self-reconfigurable modular robot: the variable topology truss (VTT). Modular robots consist of many modules that can be configured into various structures, and motion planning problem for modular robots with many degrees of freedom and many motion constraints is a significant challenge. […]

A Distributed Reconfiguration Planning for Modular Robots

Self-reconfigurable modular robots are usually composed of multiple modules with uniform docking interfaces that can be transformed into different configurations by themselves. The reconfiguration planning problem is finding what sequence of reconfiguration actions are required for one arrangement of modules to transform into another. We present a novel reconfiguration planning algorithm for modular robots. The […]

ModQuad-Vi: A Vision-Based Self-Assembling Modular Quadrotor

  Flying modular robots have the potential to rapidly form temporary structures. In the literature, docking actions rely on external systems and indoor infrastructures for relative pose estimation. In contrast to related work, we provide local estimation during the self-assembly process to avoid dependency on external systems. In this paper, we introduce ModQuad-Vi, a flying […]

High-Dimensional Area of Acceptance Using Discrete Methods

Physical connectors with self-aligning geometry aid in the docking process for many robotic and automatic control systems such as robotic self-reconfiguration and air-to-air refueling. This self-aligning geometry provides a wider range of acceptable error tolerance in relative pose between the two rigid objects, increasing successful docking chances. A new, more discrete flooding method for analyzing […]

Autonomous Modular Robots

The theoretical ability of modular robots to reconfigure in response to complex tasks in a priori unknown environments has frequently been cited as an advantage and remains a major motivator for work in the field. We present a modular robot system capable of autonomously completing high-level tasks by reactively reconfiguring to meet the needs of […]

Environment Augmentation with Modular Robots

We present a system enabling a modular robot to autonomously build structures in order to accomplish high-level tasks.  Building structures allows the robot to surmount large obstacles, expanding the set of tasks it can perform. This addresses a common weakness of modular robot systems, which often struggle to traverse large obstacles. This paper presents the […]

Robotic Edge-Rolling Manipulation: A Grasp Planning Approach

We present a novel robotic manipulation technique that we call robotic edge rolling. It refers to transporting a cylindrical object by rolling on its circular edge, as human workers might maneuver a gas cylinder on the ground.

Comments are closed.