ModLab UPenn the modular robotics laboratory at the university of pennsylvania

Posts Tagged ‘neck’
High-Dimensional Area of Acceptance Using Discrete Methods
High-Dimensional Area of Acceptance Using Discrete Methods

Physical connectors with self-aligning geometry aid in the docking process for many robotic and automatic control systems such as robotic self-reconfiguration and air-to-air refueling. This self-aligning geometry provides a wider range of acceptable error tolerance in relative pose between the two rigid objects, increasing successful docking chances. A new, more discrete flooding method for analyzing […]

Quori: A Community-Driven Modular Research Platform for Sociable Human-Robot Interaction
Quori: A Community-Driven Modular Research Platform for Sociable Human-Robot Interaction

Quori is a novel, affordable, socially interactive robot platform for enabling non-contact human-robot interaction (HRI) research in both in-lab and “in the wild” experimental settings. The package will be complete with an expressive projected face, two gesturing arms,  bowing spine, and an omnidirectional base. Software is provided at the low-level to control the hardware and at the high-level, provided by Semio, to easily generate versatile social behaviors.

Modular Robot Connector Acceptance by Configuration Space Analysis
Modular Robot Connector Acceptance by Configuration Space Analysis

Attachment and detachment between modules is critical for modular robot reconfiguration, and is a key design area for these systems. By re-purposing the interpretation of a well-known motion planning tool in configuration space obstacles for its encoding of contact geometry, we have developed a method for determining a metric of the region of error tolerance […]

Tactically Expandable Maritime Platform (T.E.M.P.)
Tactically Expandable Maritime Platform (T.E.M.P.)

We have built a system of shipping container sized robotic boats that can hook onto each other.  We demonstrate the conceptual design of a system that is capable of constructing bridges and various shaped islands that can be made compliant to waves.

X-Face
X-Face

Docking and undocking are common activities for robots (modular robots in particular). The relative frequency of this operation behooves us to ensure reliable alignment under uncertain conditions. We present a new face geometry that is numerically superior to existing alignment geometries. This geometry is intended for two-dimensional reconfigurable robots.

Factory Floor
Factory Floor

The factory floor is an experimental robotic system for the construction of passive robotically-reconfigurable truss structures. The macroscopic goal of this work is to embed autonomous reconfigurability into human-built systems.