Docking and undocking are common activities for robots (modular robots in particular). The relative frequency of this operation behooves us to ensure reliable alignment under uncertain conditions. We present a new face geometry that is numerically superior to existing alignment geometries. This geometry is intended for two-dimensional reconfigurable robots.


The XBot system is a lattice style modular self-reconfigurable robot that uses external actuation to deterministically reconfigure XBot modules. Using the principle of external actuation facilitates module miniaturization as modules do not require motors or servos to reconfigure.


Modules in the Right Angle Tetrahedron Chain Externally Actuated Testbed (RATChET) system can be programmed to form arbitrary shapes. Using an external manipulator to fold the chain under the force of gravity simplifies the module design since they do not require a motor at each joint.