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Abstract— There is a need in the field of modular robotics
for a low-profile docking face with a wide range of performance.
Mechanical self-aligning geometry features for docking faces of
modular reconfigurable robot systems can be varied to improve
the reliability of connection systems. This paper presents a new
two-layer mating face design for robots that are constrained to
move in a plane. It has a provably larger area of acceptance
than any to date. We present an analysis of both position
and orientation misalignments with simulated results over a
two parameter design space comparing this connector with
two other best-in-class shapes. The results show an average
acceptance area increase approximately 88% over gendered
mating faces and approximately 138% over non-gendered
mating faces.

I. INTRODUCTION

Robots composed of multiple reconfigurable modular units
are known as modular (and sometimes self-reconfigurable)
robots. These robots are desirable for many reasons, includ-
ing adaptability to new tasks, robustness through redundancy
and self-repair. There has been a large amount of research in
this area including dozens of hardware designs [1], [2]. These
systems can be classified into three areas based on their
reconfiguration style: lattice modules sit on a virtual fixed
lattice and move and reconfigure from one lattice position to
another; chain modules form chain and make and break loops
to reconfigure; and mobile modules move on the environment
and (un)dock with other modules or module clusters.

One of the defining elements of these systems is the
connection system. The ability for modules to easily dock
and undock with other modules is often the primary concern
for modules in which reconfiguration is the primary function
[3], [4]. For many chain style self-reconfiguring systems the
docking process has been difficult to make consistent and
reliable [5]–[8]. Primarily this occurs because of imprecision
in the positioning and orientation of modules during the
docking process.

Figure 1 shows the PolyBot G2 system which is a typical
chain style self-reconfiguring system [9]. The module has
a connection plate that is hermaphroditic, containing both
4 grooved pins, and 4 mating holes. Two connection plates
mate by having the pins on one side dock with holes on the
mating plate and vice versa. A shape memory alloy actuator
grabs onto the grooves of the pins to latch the plates in place.
Note that the ends of the pins are chamfered to accommodate
small errors in positioning.

PolyBot G2 and G3 increases robustness in docking by
providing extra sensing and control to help guide the docking
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process [5]. CONRO increases robustness by vibrating the
connectors [7]. These techniques present a complexity and
cost burden on computation and added sensing. A passive
guiding mechanism is simpler and thus typically more robust
and lower cost. For example, CKbot [10] and MTRAN-
II [11] use magnetic connectors to aid positioning and
orientation. Magnets tend to have a relatively short range
of effect and are not as strong as physical connections (with
comparable volume and mass).

Fig. 1: PolyBot G2 module (left), 20 modules in a 4 legged
spider configuration (right).

This paper introduces a new concept for self-aligning
geometry called “X-Face”. The current design applies to
planar robots operating in SE(2) based on mechanical self-
alignment. Examples of planar self-reconfigurable robots
include [3], [12], [13]. This design promises a large area
of acceptance. Area of acceptance is defined as the range
of possible starting conditions for which mating will be
successful. This area of acceptance is a geometric measure of
the robustness of the docking process to errors in the relative
position and orientation of two mating connectors.

A. Background

The alignment problem bears resemblances to a classic
robotics problem: the peg-in-hole problem. The peg-in-hole
problem requires precise alignment of two parts in position
and orientation by a manipulator arm (represented by a num-
ber of pegs and holes, which are optionally chamfered).One
solution is to use a Remote Center Compliance (RCC), first
proposed by Nevins et al. [14].Whitney [15] applies an RCC
device to the peg in hole problem and computes necessary
equilibrium and RCC parameters for successful mating.
Since then, RCC work has included different peg/hole shapes
[16], sensing the hole using the arm [17], and six-DOF
contact mechanics [18].

In the modular robotics community, there has been sig-
nificant work on the docking mechanisms including sensor-
based methods [5] and latching mechanisms [6]. Literature
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on passive docking mechanisms, however is more sparse.
Nilsson [19] defines a bound for 2D self-alignable offsets
for position only, establishing bounds for both gendered and
ungendered connectors. Modular robots, including Vasilescu
and Rus et. al. [20], White and Lipson et. al. [21] sometimes
make use of faces which have self-aligning features, but no
comprehensive focus on these docking connectors has been
done as yet. Furthermore, these robots often have a relatively
small range of alignment in comparison to their size.

II. SETTING UP THE PROBLEM

We assume that we have two modules that will mate
together while being constrained to move on a plane. Since
we focus primarily on the projected geometry of the module
on the plane, we will refer to the modules as “faces.” Further-
more, we assume one face (the moving face) is approaching
a non-moving face (the base face). By changing frame
of reference, we can make this equivalent to any general
case of approaching faces. Problem specification includes
face geometry, dynamic conditions (i.e. friction, damping,
restitution coefficients), forcing condition, and degrees of
freedom (DOF) of each face.

In general modular robots require some sort of mechanical
latching in their interfaces to controllably hold or release.
Since the faces occupy the same space once docked, these
issues are the same regardless of face. We address just the
docking leaving designing these latches to future work.

For our analysis we assume the robot arms hold both
faces, and the arm holding the moving face moves in perfect
position-controlled linear motion in the forcing direction (e.g.
purely vertical) with the axis perpendicular to the direction of
motion we call x and any initial offset position of one face
from the mating face by x0 (Fig. 3). Any initial offset in
orientation from the mating angle we call θ0. The arm holds
each face at a fixed rotation point where the face is free to
rotate. This is nearly equivalent to assuming the connector to
be attached to an arbitrarily large robot by a pin joint. This is
not unrealistic, as self-reconfiguration often occurs between
large clusters of modules. We assume zero friction, zero
coefficient of restitution and large enough damping so that
inertial effects can be ignored. We also assume the forcing
direction is such that the derivative of distance is negative,
i.e. the faces must move towards each other to mate.

For the connectors in this paper, the design parameters
we compare are the ratio H

D (related to profile area HD),
where D and H are the width and height of the face
respectively, as seen in Fig. 2. The distance from the base
of the connector profile to the rotation point (similar to the
center of compliance), is rp, a dimensionless number as a
multiple of D. The design parameters scale with D, and we
can objectively compare shapes regardless of size.

The problems under consideration in this paper are sum-
marized in Table I.

A. Face Types and Lateral Self-Alignment
In [19], Nilsson proves that for single-piece faces (faces

which can be written as a function y = f(x) in a plane,
where y is the direction of motion to mate two matching
faces), a face that gives the largest bi-directional offset

Condition State
Forcing: x = x0

Frictional: Zero Friction
Damping: Critically damped

Restitution: Zero
Initial Offset Dimensions: 2 linear(x & y) and 1 angular (θ)

Free Dimensions: 1 angular (theta)
Base Face Free in θ, Fixed in x & y

TABLE I: Mating condition summary

correction possible for identical connectors is D/3 where
x(ymax) = D/3, x(ymin) = 2D/3. He also proves that for
gendered faces this relationship is D/2 where x(ymax)) =
D/2 for the male and correspondingly x(ymin) = D/2
for the female. We call these the S-Face and the V-Face
respectively.

Figures 2 and 3 show the simplest example of the iden-
tical faces (S-Face), gendered faces (V-Face) and a newly
proposed geometry (X-Face).
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Fig. 2: Three face geometries with the same ’profile area’.
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Fig. 3: A representation of the maximum lateral offset for
successful self-alignment.

1) S-Face Geometry: The S-Face is the name we give
to the identical face geometry analyzed by Nilsson. In
this example we will use the simplest profile of the face
(four vertices connected by straight line segments). Other
geometries that have the same max and min conditions exist
and similar analysis in this paper will apply without loss of
generality. If the profile is viewed horizontally (as in Fig. 3)
with horizontal width D, one vertex is at one-third of the
way across the face, and the other is at two-thirds. The two



middle vertices are symmetrically offset from the vertical,
one up and one down.

This shape gives the maximum lateral offset that still
yields self-alignment for a 2D ungendered profile [19], an
offset of D/3 in either direction.

2) V-Face Geometry: The V-face is the 2D equivalent of
the cone and hole shape, a shape representing the maximal
lateral offset for 2D profiles if we allow for the connectors to
be gendered [19]. The male profile is essentially an isosceles
triangle. The maximum lateral offset is D/2.

3) X-Face Geometry: The X-Face is a new face geometry
designed to maximize acceptance range for real-world robots
aligning in a SE(2) plane. It is composed of two layers,
with the top a mirror image of the bottom, so it is no
longer purely 2D, though the motions are still constrained
to be planar. These faces will self-align in the lateral case
as Nilsson examines it up to the full width D of the
connector away, an improvement threefold over the S-face.
Additionally, the X-Face does not suffer from the drawback
of being gendered, meaning we do not have to check genders
of faces before mating them. Since the self-alignment process
is defined by contact of the two pieces, this is the theoretical
maximum lateral offset for planar constrained motions of
self-alignment.

B. Mating Problem Conditions
In the previous case we have assumed: planar constrained

motion, the same size (D) for both connectors, no rotations
when docking and the vertical axis as the docking direction.

III. SOLVING THE PROBLEM

A. X-Face
For the faces under consideration in this paper, the mating

problem can be divided into three phases: the approach
phase, the alignment phase, and the slide phase. During
the approach phase, the parts approach along the direction
of forcing until the first contact point is made. During the
alignment phase, the parts rotate and slide relative to each
other, maintaining contact until either the parts are either
aligned with the same angle, or have misaligned beyond
recovery. The final phase is the sliding phase, in which the
parts that have the same rotational alignment slide into lateral
agreement.

For the following analysis, we exclude cases where two
approaching faces will not contact. When the forcing di-
rection is along the y − axis, this is equivalent to x0 >
2D ∗ rp + H . We call this the ”distance condition”, and it
applies to all connectors.

1) Approach Phase: The approach phase ends when con-
tact occurs, which can be handled by applying collision
detection. This gives us the point of first contact.

2) Alignment Phase: When the first point contact is made,
generically we will assume a vertex on one side contacts a
line segment on the other side. The next step is to determine
how the parts will rotate; towards alignment or away from
alignment.

The direction of relative rotation can be determined by
the geometry; the location of each rotation point (where the
robot arm is applying translational forces but no torques) call

them PM and PB , the location of the point of contact PC

and the normal to the line segment at the point of contact.
We assume a system without friction, so the only forces

on both bodies at PC must be in the direction normal to
the line at PC and in equal and opposite directions.Since the
moving face must rotate about PM the force at PC will cause
a torque about PM which will indicate its rotation direction.
Similar analysis can be used for the base face. In addition
to this torque, a slip occurs at PC . The complication comes
from the fact that both the contact slope and the location of
PC changes as motion occurs and in some cases the motion
can reverse.

We model this by building a simplified dynamic system
(with moment of inertia I1 = I2 arbitrarily small, but
nonzero) seen in Fig. 4. We numerically integrate this system
to simulate the alignment phase. We only care about the path
and not the rate, so the actual magnitudes of I and F do not
matter, and are excluded by setting them to 1:
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Fig. 4: Alignment path

q2 = d+ l cos(θ2)

θ̈1 = −q1 (1)
(θ̈1 − θ̈2) = − sin(θ2)l

Together with the forcing condition x = x0, this defines a
one-DOF system.

The alignment condition is:

θ2 = βp + αe (2)

where βp and αe are constant angles determined by the face
geometry as shown in Fig. 4. βp is the angle between the
point face lever arm and its vertical. αe is the angle between



the edge normal and the edge face vertical. Misalignment
conditions occur if θ2 < 0. This represents a bad mate, which
we will talk more about shortly.

3) Sliding Phase: Once the faces are aligned, we move
into the sliding phase. During the sliding phase, the two
pieces are aligned (that is, θmoving = θfixed), but there
remains some (x,y) offset. Since we have excluded those
situations which do not meet the ”distance condition”, we
know that these two faces will at some point be close enough
to dock. We also know that the derivative of the distance
is negative, so the faces can only get closer. Aligned faces
represent a stable equilibrium, so the only way for them to
get closer is by sliding into the mating position. Thus, if we
satisfy the alignment condition and the distance condition,
we have a successful mate.

Likewise, a pair of faces which has failed to meet the
alignment condition must necessarily be a failure. Even if
it gets close enough, we will only get a ”bad mate”, which
the system will not be able to recover from if the forcing
condition is a constant.

Fig. 5: Examples of bad mates. Bad mates are unrecoverable
for constant forcing conditions.

B. V-Face and S-Face
The earlier collision model is fine when only one-point and

sliding contact cases are possible, as in the case of the X-
Face. The S-face and V-face are slightly more complicated;
there exists for these models a two-point contact case, as
seen in Fig. 6. Rather than attempt to solve these cases,
we establish bounds for these faces beyond which they will
certainly fail. These characteristics give us an outer bound or
”best case” on area of acceptance to compare to the X-Face
simulation.

Fig. 6: Example of two-point contact case.

The ”best case” bounds for these faces are defined as
follows. The path of the maximal point (e.g. the tip) of the

moving face must contact one of the faces on the mating
shape which would be adjacent to it in the mating minimal
point. For the V-Face, this is mathematically equivalent
to:|xtip| < D/2. The other condition is that the initial
angular offset does not already break the misalignment
condition; meaning |θ0| < pi

2 − |αe|.

IV. RESULTS

We ran the numerical simulator on the X-, S-, and V-
Faces over a range of parameters. The relevant parameters
here, as mentioned in Section II-B, are H

D and rp. We tested
each face over the same subset of the feasible set of initial
states {−D < x0 < D,−pi

2 < θ0 < pi
2 }. The subset of

initial conditions is a combination of 41 x0 values and 41
θ0 values, giving us 1681 discrete points evenly spaced over
both dimensions of the feasible area. Running the simulation
on each of these points gives us a set of initial conditions
paired with their successful/failed state. We use the number
of successful conditions as a metric M for that particular
connector.

These metrics were generated for several values of the
design parameters H

D and rp. M serves as a scalar discretized
approximation of the area of acceptance we can use for
comparison. We present the these metrics and their ratios
in the Tables II-IV.

For the X-Face, the simulator was run once for each layer,
comparing distances to see which layer collides first.

We can see that the X-Face generates a larger area
of acceptance for most values in the design space. Some
parameter values give better results with the ”best case” of
V or S-Face, but only in a specific narrow range. If we take
the mean across the design space, we find that the mean
X-Face/V-Face ratio is 1.8838, and the mean X-Face/S-Face
ratio is 2.3846. In almost every case of H/D and rp the X-
Face has significant improvement over both S-Face and V-
Face area of acceptance. The few exceptions are near rp = 0
and H/D = 1.

A. Discussion

Looking at the data, we see some unintuitive results. As
the rotation point comes closer to the face, the area of
acceptance increases as we expect, however it drops off
for rp = 0. This is because of the distance condition;
Once the rotation point is that close, significant offsets will
result in failed mates simply because the faces do not come
close enough together. As the H

D ratio increases, the area of
acceptance across all faces decreases. As mentioned for the
”best case”, there is some angular offset limit beyond which
docking cannot succeed. Increasing the slope H

D , reduces
this limit, naturally depressing the area of acceptance. More
extreme values of H

D and rp were examined, but the area of
acceptance ”plateaus” and ceases to be interesting.

The authors recognize that the metric used in this paper
is not necessarily ideal; correcting for errors in position and
orientation is done over a range. We desire some metric that
gives a range of {x0, θ0} offsets that will always succeed
rather than a total count of all places where this is possible.



rp values
H/D 0 1 2 3 4 5 6 7 8 9 10

0.0625 659 820 687 511 403 327 283 248 223 204 186
0.10882 623 802 667 501 395 322 281 246 222 200 186
0.18946 545 763 649 480 387 319 276 243 219 199 179
0.32988 397 696 618 440 371 307 269 239 216 195 176
0.57435 206 545 587 385 344 292 256 232 208 189 173

1 67 318 459 305 303 262 234 210 192 173 157
1.7411 41 120 254 274 214 206 187 165 146 126 108
3.0314 80 119 163 229 173 138 135 131 123 112 102
5.278 89 107 124 142 131 115 105 91 89 88 84
9.1896 74 75 89 92 89 87 82 79 76 72 69

16 55 57 62 63 64 63 68 61 59 60 57

TABLE II: M(X-Face)

rp values
H/D 0 1 2 3 4 5 6 7 8 9 10

0.0625 37 739 598 403 282 224 186 159 142 125 114
0.10882 105 699 570 392 278 222 185 159 139 125 114
0.18946 93 619 519 379 273 217 181 156 138 125 114
0.32988 182 518 452 354 263 211 178 153 136 123 109
0.57435 209 379 353 303 249 200 172 150 132 120 109

1 208 239 236 223 204 183 161 142 126 114 105
1.7411 159 159 159 156 150 143 133 126 116 107 99
3.0314 99 99 99 99 99 97 95 93 90 87 84
5.278 59 59 59 59 59 59 59 59 59 58 58

9.1896 39 39 39 39 39 39 39 39 39 39 39
16 19 19 19 19 19 19 19 19 19 19 19

TABLE III: M(V-Face)

rp values
H/D 0 1 2 3 4 5 6 7 8 9 10

0.0625 38 508 448 256 178 143 116 100 87 76 73
0.10882 108 480 425 251 176 141 115 98 87 77 73
0.18946 99 444 389 245 170 135 113 98 85 77 73
0.32988 203 387 341 227 165 129 112 96 84 75 68
0.57435 193 292 272 207 155 128 106 95 82 74 67

1 179 200 193 172 143 116 101 87 77 73 64
1.7411 133 130 133 127 116 102 90 81 73 67 61
3.0314 80 80 83 80 79 75 71 71 64 60 54
5.278 52 53 54 53 53 52 52 51 49 48 49

9.1896 26 27 26 27 26 26 27 26 27 26 26
16 26 27 26 26 27 26 26 26 26 27 26

TABLE IV: M(S-Face)

(a) Before alignment (b) During alignment (c) After alignment

Fig. 7: Example of experimental validation procedure for X-Face with x0=2cm, θ0 = arctan( 13 ) ' 0.32. The grid pattern
behind the transparent pieces has a 0.5cm spacing.



B. Experimental Validation
Ideally, we would fully validate the results experimentally;

however given the scale involved in calculating the area of
acceptance for these connectors, it is difficult to address this
over the full range examined in the tables. Each design has
1681 initial conditions that are checked for acceptance, for
100 different combinations of design parameters for each
face type. Additionally, some conditions (no friction, coef.
of restitution) are impractical to replicate in the lab.

Simple experimental validation was performed by con-
structing small models of the faces and manually driving
them together. Offsets (translational, and angular measured
by tangent) are measured by use of grid paper beneath the
models. Fig. 7 shows a typical run. The validation generally
agreed with the model, except in cases where static friction
became significant. In these cases the models were observed
to ”stick” and not move along the prescribed path. To find
M for the equivalent real-world case models, we would need
to add friction to our model.

C. Limitations and Issues
The possibility exists in the real world case for some

misalignment in the out-of-plane direction. A small design
change can fix this misalignment. Taller layers and a gap
between layers adds some tolerance to out-of-plane mis-
alignment by keeping the appropriate layers in contact. This
prevents small misalignments from causing complete failure
to engage the connectors correctly. Future work includes
applying the X-face concept to improving the acceptance
range of three-dimensional connectors.

The lack of friction in the analysis is problematic. In
particular, stiction often leads to jamming failure. Friction
may have significant implications; steeper connectors may
have wider area of acceptance in high-friction cases. Dy-
namic friction is also capable of exerting an influence in
terms of relative alignment speed of the two faces. A more
general simulator which can account for cases with more
than one contact point and/or friction could be helpful in
fully determining the viability of different connector shapes
and is left to future work.

V. CONCLUSION

This paper presents a new face shape, the X-Face that
has triple the previously largest acceptance distance for
planar genderless connectors. Acceptance area is explored
which includes angle as well as position misalignments. A
simulator is used to find an area of acceptance over a two
design parameter set of values for the new face. Over a
representative set of the relevant design parameters (profile
size, remoteness of center of rotation), with a few exceptions,
the X-Face was found to have a significantly greater area
of acceptance. The mean across all the cases examined is
found to be ∼88% greater for the X-Face compared to
the V-Face, and ∼138% greater for the X-Face compared
to the S-Face. The S-Face and X-Face are the ungendered
faces, so for cases where we require genderless docking
such as modular self-reconfigurable robotics, we believe this
represents a significant improvement in capture capability for
low-profile docking faces.
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