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Abstract—We address the problem of detecting embed- con guration that could serve the same function? We
dability of modular robots: namely, to decide automatically  call this problem thedesign embeddingroblem.
whether a given modular robot design can simulate the In this paper, we provide a formal de nition for design

functionality of a seemingly different design. To that end, we beddi iat logical and ki i diti d
introduce a novel graph representation for modular robots embedding via topological and kinematic conditions, an

and formalize the notion of embedding through topological @ Poly-time algorithm using dynamic programming and
and kinematic conditions. Based on that, we develop an matching to ef ciently detect when one design can be
algorithm that decides embeddability when the two involved embedded in another design. The algorithm is intended
designs have tree topologies. Our algorithm performs o 4 pe ryn of ine on a central computer. Information about

passes and involves dynamic programming and maximum . .
cardinality matching. We demonstrate our approach on real embeddability can then be used to make decisions about

modular robots and show that we can detect embeddability the designs. For example, Section VII discusses how
of complex designs ef ciently. kinematic behaviors can be translated from one design
to another design that embeds it.

I. INTRODUCTION
Il. RELATED WORK

Modular recon gurable robot systems have been stud-

led for several deca_d_e s [22] [.17]' The_se systems haﬁ/gve included narrower optimization of specic kine-
demonstrated the ability to achieve a wide range of tasks .. . . .
Mmatic linkages for manipulation problems [3], [19] as

like walking, rolling, climbing over obstacles, graspinqN : . i
2 . o ; . Hvell as a selection approach, choosing the most ap
and carrying items for various applications, includin opriate con guration for a task from a given set of

search and rescue [21] and waiting restaurant tables [C in gurations [13]. In these cases, the robot would

One of the most_ mteresung aspects of quular. "'%ense the environment for features and select the most
con gurable robots is the ability to transform into dif-

f t sh to adant t ded tasks. Techni a;tjé)ropriate con guration from among a small set to
erent shapes 1o adapt to needed tasks. 1echniQUeS ., 5 goal in a locomotion task. Behaviors have also

. . . . Te
automatically determine which shapes and con gurationg, o, automatically generated by identifying functional

can accomplish a task would makg .these systems MQ[G,ciryctures (e.g. knees) in modular robot designs [2].
powerful. Most tasks are compositions of many sub- A more general approach would look at con gura-

tasks: for gxample, an assemb!y task could be COMPOSfiths on a ner-grain scale. Since the system is already
of many pick-and-place operations, . . modular, analyzing the capabilities of assemblages by

We refer to the automated, Qe”?ra“"e 9'65'9“ of v%rying modules is natural. However, the number of
mod_ular robot from a task spect cation atesign SYN" hossible arrangements of modules grows exponentially
thesis In a generative system, it would be useful to buil ith the number of available modules, which makes the

sgstemi_hlerarcglcalll(y, t;t\uldmg subgroups Ofdm?jdm,efélection approach intractable. For very simple tasks such
that achieve subtasks. As a rst step towards desig ,omotion in a line, ne-grain generative approaches

sythesis, we cgnsider the following problem: can Wg, e heen achieved using evolutionary approaches [10].
ef ciently determine if a subgroup of modules con gured Design synthesis has been studied in the context of

for a kinematic task can be realized in a larger group . .4 achine design [7], [18]. However, in the

i i ? . . .
of modules con gured for another kinematic task? Fotrnost general sense this requires an understanding of the

examplle, given a ;ubgr]]roup of modfules éh?t can fuTCt'%ace of all tasks, and the relationships between module
as a planar arm, is there a set of modules in a arg(‘?(.Iimposition and their interaction with the environment,

) ) which is very broad.
Y. Mantzouratos and T. Tosun contributed equally to this work. ¢ .S ery broad .
Y Dept. of Computer and Information Science In this work, we use graph representations of modular

Z GRASP Lab and Dept. of Mech. Eng. and Appl. Mechanics ~ robots. Existing work in graph representations of modu-

_School  of Engineering and Applied  Sciences, Univerigr rohots includes recognizing if two full con gurations
sity of Pennsylvania, Philadelphia PA, USA. Contact:

mantzouratos@gmail.com, tarikt@grasp.upenn.edu, are the same [14]’ identifying graph automorphisms
sanjeev@cis.upenn.edu, yim@grasp.upenn.edu i [12], and recognizing identical substructures for ef cient

Related approaches with modular robots in the past



recon guration [11]. Our work distinguishes itself byer:O 2 R8. The orientation of framé relative frame

including task implications on con gurations, de ningW will be written W RB 2 SO(3).

conditions to replicate the capabilities of a design by

replicating its structure. To our knowledge, it is the rst

representation that captures the full kinematic structufe De nitions and Statement of Main Result

of a modular robot design; in fact it can represent any We now formally introduce the graph representation

acyclic kinematic structure composed of revolute jointsef modular robotic designs that we will use throughout
our discussion of topology, and present the notion of

[1l. PRELIMINARIES topological design embedding.

This section provides the basic graph-theoretical coR?® nition 1. (Unit Block). A unit blockB = h i is
cepts and de nitions that are used throughout the pap&@? €lementary rigid body capable of implementing a
a more elaborate exposition can be found at [6]. prespeci ed set of built-in functionalities 2 F .

Let G (V; E) denote an undirected graph, whé&tés a  Built-in functionality is independent of topology; e.g.,
setof nodes, anBE V'V is a set of undirected edges.consider a block equipped with sensors, a processor unit
Given a subse¥® V of the vertices, the subgraph in-or a battery. We de ne a partial order on unit blocks on
duced byV°is given by(V%f(u;v) 2 E ju;v2 VY). a functional basisB; B, if and only if 1 .

A simple pathv; Vk = (V1;Ve;:ii;w) in Gis a
sequence of distinct nodes‘Yhsuch that for consecutive
nodesv;;v; in the path,(vi;v;) 2 E. The length of
a path is just the number of edges it contains and tlié1
distancebetween two nodes;v 2 V in G, denoted by q

c(u; V), is the minimum length of a path from to v. ©
By convention, g(u;u) =0 and g(u;v) = 1 when
such a path does not exist. In Section V-B, we will extend the de nition of

G is called atreeif each pair of nodes is connected byunit blocks to represent rigid bodies, and map edges
exactly one simple path. When a tree is rooted at a notie revolute joints that provide movement. For now, we

2 V, ancestors and descendantsud? V are de ned postpone discussion of kinematics until the topological
as follows. Anyv 2 V such that g(;v) < g(;u) algorithm is explained completely.
and pathv  u does not involve is called anancestor
of u with respect to . Similarly, anyv 2 V such that

c(;v)> (;u) and pathv  u does not involve
is called adescendanbf u with respect to . We denote
the set of descendants of a nodewith respect to

IV. TOPOLOGICALEMBEDDING

De nition 2. (Modular Robot Design)Given a set of
unit blocksB, a robot desigrD = hG(V;E); i de ned
B is a labelled, undirected grapfs, where nodes of
correspond to unit blocks through : vV 7! B, and
ges between two nodasand v represent a revolute
joint connecting (u) to (V).

De nition 3. (Design Embedding)Given two designs
D1 = hG1(Vy;Eq); 1i and Dy = hGo(Va; E2); 2i
dened on a set of unit block8, and an injective
mappingf : Vi 7! V,, we say thatD; embeds inD,
asdesc(: ) V. We will write G[u # ] to denote with respect tdf , and writeD, v; D5, if and only if:

the subtree ofs that is rooted ati and contains exactly 1) Functionality subsumption8u 2 Vi, we have
desc@i; ), i.e., Glfug[ desc(:; ). , Cl(“) a(f(u). w2 e i
We denote immediate descendants Ryu; ) = ) Connectivity preservatior(u; v) 1, there ex-

fv 2 Sy V)= 1 Il th heehil- ists a simple path ,, = f(u) f(v) in G,.
d\r/en c(j)(;,\slj; (”\l,\',m)] JreGSgJe’(;) to .gaanndo(cj:: ctar? n;];v:: rlnul- 3) Path disjointness: for any pair of edges with distinct

tiple children. An immediate ancestor is denoted by endpoints(uy; v1); (U3 V2) 2 Ei, the correspond-

P(u; ) = fv2Vndesc@: )j o(uv)=1g and is ing pat.h.s uyv, and uzv2 |.n G.z are vertex-disjoint.

called theparentof u with respect to . Each node has In addition, for any(u;vs); (u;v2) 2 E1, w, and

one parent, except which has none. We can naturally w, Share onlyf (u).

extend the above tohild and parent edgeswhich will In general, we refer t®; as thesubdesigrandD, as

be denoted by ®(u; ) andP®(u; ) respectively. the superdesignWhere there is no chance of confusion,
Finally, a rigid body is a set of points capable ofwe omitf and writeD; v D,.

rotation and translation in Euclidean space. Each rigid Fig. 1 offers the intuition behind the de nition. Con-

body is de ned by abody frameand origin. Reference dition (1) requires every vertex in the subdesign to map

frames are denoted with an uppercase calligraphic letter a vertex of equal or superior functionality in the

(e.g. W), and vectors in boldface (e.g). The position superdesign. Condition (2) preserves the connectivity

of point p relative pointo in frame W will be written of the subdesign once it is embedded: nodes which



(a) Condition 1: every node at the top maps (@) Condition 2: all edges at the top majc) Condition 3:D1 v Dy, butD1 6vD3 since the
a node of superior functionality at the bottonto distinct simple paths at the bottom. path disjointness condition is violated (red).

Fig. 1: Topological conditions for embedding.

were able to interact through the joints can still do ittmbedded in another unary design that contains exnly

albeit maybe through longer paths. Finally, condition (3h which case the only relevant embedding condition to

ensures that degrees of freedom which are independehéck is functionality subsumption.

in the subdesign remain independent in the superdesignSubsequently, we move towards by examining the
From a topological perspective, embeddability iparents of the leaves & ,; for such a parenp, 2 V,,

equivalent to whether the subdesign is a topologicale setT [vy; p2] to true if 1(v1) 2(p2), or

minor of the superdesign; see [8] and references therein. . o

We are now Eeady tg state o[ul main result. 92 2N (pz; 2) such thafT[vy; vo] = true
The intuition is that eithew; is subsumed by,, or

it is subsumed by one of,'s children. We continue

likewise until we complete the;-th row of T and then

repeat for another leaf &f;. At the end, we know exactly
which nodes oD, can host the leaves @ ;.

We are now ready to move up one level Dy as
Note thatd is the maximum number of edges incidentvell. Let p; 2 V; denote a parent of a leaf from the
on any node. For most real robot applicatiods, 5. previous step. Starting from nodes that are at the same
B. Outline of Algorithm height inD, asp; is in D1, we setT[ps; p2] to true in

the following two cases.
We now present a dynamic programming algorithm The rst one, which corresponds tp; embedding
that decides whetheb; v D, and if so, produces a directly in p,, is triggered if 1(p1) »(p2) and in
mappingf : Vi 7! V. We focus on obtaining a yesaqdition, there exists an assignmént N (pi; 1)

or no answer rather than the mapping itself; it can tﬁ(pz ») of children ofp; to children ofp, such that
reconstructed the regular dynamic programming way, by

keeping track of the option we selected at each step in iMj =N (ps; 1)j;and 1)
a separate array and backtracking; see [4] for details. Tlvi;vz] = true 8(vi;vz) 2 M:
We will maintain ajVij | Voj truth tableT, where Essentially, these conditions make sure that every child
T[vy1; Vo] is true under a speci ed rootingg 2 Vi, 22 of p, embeds in a unique child qf.
V, if and only if Dy[vi # 1]V Dz[vo # 2]. At the end The second case captures that while might not
of the algorithm,T[ 1; »] answers whetheD; v D, directly embed im, in the way described above, it may
under 1 and »; if the answer is negative, we repeat thatill embed in one of,'s children, i.e.,
process for a new rooting until we either get a positive
answer or we exhaust all possible rootings, in which case
we conclude thab, 6vD». Notice that since we are proceeding bottom-Tifp:; v2]
Initially, all entries are false. We subsequently procedd lled before T[p;; p.], and therefore our computations
bottom-up, starting from the leaves Bf; and moving are always well de ned.
gradually towards ;. As the base case, we consider a After the p;-th row of T is calculated, we repeat for
leaf v; 2 Vi and check whether it embeds in the leavesll nodes at the same height, and then move upwards
of Dy, setting the appropriate entries Bfaccordingly: exactly the same way until we hit. Essentially, we |l
o ) our table by performing a reverse pre-order traversal on
Tlviive] = true ¢ 1va) - 2(va); G, where at each step of the traversal we process the
for all leavesv, 2 V,. Intuitively, this corresponds to nodes ofG, in reverse pre-order as well. Notice that it is
checking whether a unary design consistingwefis not necessary to process all the leaves rst, which we did

Theorem 1. Given two design®; = hG;(Vi; E1);

and D, = hG,(V2; E); 2i dened over a set of unit
blocksB, whereG; and G, are trees of maximum degree
d, there exists a deterministic algorithm that decides
whetherD1 v Dy in time O(jV4j jVoj d?9).

9v, 2 N (p2; 2) such thatT[p1;vq] = true  (2)



in our exposition for simplicity, as long as we process matching (say (u% = v9), andf (Ux+1) = v, it follows
node only after having dealt with all of its descendantshat each ,,, 4o starts with a distinct edge of the

It only remains to show how to computh form (f (Uk+1);f (U9) = (v;;v0) 2 E,. Paths cannot
N (p1; 1) N (p2; 2) from equation (1): we construct ashare any vertex later, since that would imply a cycle
bipartite graph wittN (p1; 1) on the left sideN (p2; 2) in Gy, contradicting its tree structure. Consequently, all
on the right, and an edge; v») if and only if criteria of embedding are satis ed, afth[ux+1 # 1]V
Daolv; # 2].

The second case follows by the same argumentation
Intuitively, v, is connected tas if and only if subdesign and a similar (nested) inductive argument\gn O
Di[vi # 1] embeds inD;,[vo # ,]. We subsequently . . .
compute a maximum cardinality matching [9]. At thisLemma 2 (Algorithm Completenegsﬁlven design®,
point it is also possible to incorporate arbitrary user inptﬁnd D2, if By v D2 then the algorithm accepts.
that explicitly disallows embedding of particular nodesProof. Suppose thab, v D, for f : Vi 7! V,. Let 1
be an arbitrary node iw;, = f( 1) 2 V, and consider
i ] ) running the algorithm with ; and , as the roots. As
Lemma 1. (Algorithm Soundness)Given designsD1  pefore, relabel the nodes of both graphs to re ect reverse
and D, if the algorithm accepts theB; v Do. pre-order; we sketch an inductive argument\an
Proof. Suppose that the algorithm accepts and lgt ~ As abase case, notice tHag[u; # 1], which consists
and , re ect the roots ofG; and G, at the time the Only of ui, embeds into som®;[v; # ] as a direct
positive answer was Computed, ahd: Vi 7'V, be result of the fUnCtionaIity SUbSUmption criterion, where
the suggested mapping. Relabel nodes of both graphd {¢!1) = Vj. Therefore,T[us;v;] is trivially true.

Vi 2N (p1; 1);V2 2N (p2; 2) andT[vy;vo] = true

C. Formal Analysis

re ect reverse pre-order, and Iat = fug;up;:::; ;g For the inductive step, consideox.; and let
andV, = fvy;vo;:::: 29. We will use strong induction f (Uk+1) = Vj. By the functionality subsumption cri-
onui,i=1;:::;jV4j. terion, 1(Uk+1) 2(vj). We only need to show

For the base case, 1@uy;Vv;] be true. Sincau; is a that there exists a matchingl satisfying (1) and we
leaf, D1[u; # 1] contains onlyu; and the only relevant are done — equation (2) takes care of propagating the
criterion from de nition 3 is functionality subsumption. result upwards. By the connectivity preservance and
By construction,T[us;V; ] is true if and only if the func- path disjointness criteria, it must be the case that for
tionality of 1(u;) is subsumed by either,(v;) or one €veryu®2 N (ug.1; 1), there exists a unique, vertex-
of its children, and therefor@;[u; # 1]v Dalv; # 5], disjoint path y,,, wo in G. While f (u9) might not be
foranyj =1;:::;jVaj. in N (vj; 2), vertex disjointness implies that each of

Now assume that for K, if T[u;;v;] is true then u,., we Passes through a unique, distinct child gt
Difui # 1] v Dalv; # ], for all j. We are going to By hypothesis then, the respective entriesToére true,
show that the same holds fo., too. Indeed, x an and the suggested matching will satisfy (1). O

arbitraryy; and suppose thalt[uy ;] = true. fuka | orama 3 (Algorithm Runtime). The algorithm pre-
is a leaf, we are done by the argumentation above, g‘%nted above runs in M@(Vij [Vaj? d2)
assume otherwise. Recall that there are two cases whic V1Vl '

could have forced the entry to be true. Proof. For each rooting; 2 V3 and , 2 V,, we Il a

If the rst case triggered the truth assignment, thetable of sizgVij j V»j. Each entry might require solving
it must be that 1(uyk+1) 2(vj) and there exists a a matching instance on a bipartite graphQufd) nodes,
matchingM betweenN (u+1; 1) andN (vj; 2) such which takes timeD(d%®) [9]. As a result, the algorithm
that (1) holds. Obviously the functionality subsumptiomequires timeO(jVij jVoj d?®) to check a xed rooting.
criterion of embedding holds. By hypothesis and the faétow note that based on the proof of lemma 2, we can
that M covers all the children ofik+; , connectivity is X 1 and iterate ove¥, for the choice of , instead of
maintained - the subdesigns rooted at the children t§ing all rootings. The claim follows. O
uk+1 embed in children of;, and sincef (Ux+1) = Vv;,
every edge(ug1:u) 2 E; corresponds to a pathD- 2-Pass Approach
utilizing (vj;v9 2 E,, where(u%v9 2 M. Finally, We now improve the runtime by a factor ¢¥,j to
path disjointness is also maintained. By hypothesis, vabtain the claim of Theorem 1. As is, the algorithm
only need to care about paths of the form,,, ..o = needs to tryO(jV,j) rootings to decide embeddability.
f (Uk+1) f(u9, whereu® 2 N (ug+1; 1). Since Since the root; 2 V; is xed, let T, be the table
f (U9 maps to a distinct child of; by denition of computed wherD is rooted atv 2 V>. We show here



¥e
/A

(a) v1 embeds in a child op, (b) vi embeds in pg even if
other thanv;. D2[p2 # p3] is removed.

© /(D fvi 2 Vi jDafvi # 1]v (D2[p2 # p2] nD2[v2 #p2])0.
/.\__ . \® - To show that (p2;Vv2) (p2; v2), suppose that
@ @?\@/ vi 2 (p2;Vv2) and consider what forced this decision:
2 O 1) There exists a chilgd 6 v, such thafT ,[vq; V3] =
true. Then, by correctness of the original algorithm,
Di[vi # 1]V D2[VS # ,]. However,D[Vvd # ;]

is a subset ofDy[p, # po], since VY is still in
N (p2; p2), and it does not have any nodes in com-

Q@//()@@ mon with D,[v, # p,], otherwise we would have a
N o cycle. It then follows thai; 2 (p2;Va).

2) If vi 2 (p3;p2), then by a simple inductive
(c) v1 is subsumed bp, and every child of/; embeds either argument we obtain that, 2_ _(pg; p2), and since
in a child of p, other thanvy, or in p3 without reusing any D2[p9 # P91 nDy[p, # pI] is just one branch of
parts Olf the Sub"eg_z[l)zh# p3]. When this happens, it is D2[p2 # p2] that does not have anything to do with
equivalent to re-rooting the tree pg. any other children ofy,, the claim follows.
Fig. 2: The three cases of message construction. 3) This condition is straightforward, since,, and
therefore the subdesign hanging from it, are com-
that only two passes suf ce to compute a tafile such pletely excluded from the matching process.
thatT [4;v]= trueiff Ty[ 1;v] = trug8v 2 V,. Itis  Opposite direction is similar and we only sketch it.
then not hard to see thalt, v D iff at least one entry assumev; 2 (p,; v2) and consider where; embeds:

of the i-th row of T is true. 44.,0 . 0
. o 1) In a childv3y of p, other thanvy; but thenD,[v; #
During the rst pass, we rodD, arbitrarily at , 2 V, ) 0] = Dz[vg# ZF])z 2 2lvz
= 9 ]

and computd , as before. The second pass involves top-Z) In the parent ofp,, say pd, without involving
down message passing. In particular, we iterate through D,. Then, it must k,Je thalvzl, 2 (09:p,) and
V2 in pre-order, starting from., and each node, 2 in(.juctivel'y we get (pd;p2) = (pg'Pzi-,
V2 forwards to every childiz 2 N (pz; 2) a message 3) Inp, andv; is not included in the relevant matching.
(p2; v2) that is equal to .
_ All our conditions then follow. O

fvi2 Vi jDa[vi# 1]v (D2[p2 #p2] nD2[v2 # p2])g: . o

B _ Similarly, once (p;;Vv2) is passed tov,, we set
Intuitively, (pz;Vvz) contains all nodes o¥/; that can T [v;;v,] to true for eachv; 2 Vi that satis es any
successfully embed i, without using the subtree of the following conditions:

hanging fromv,. GivenT , and the respective message 1) T,[vi: Vo] = true.
from the parent op,, sayp3 2 V,, we compute (pz; V») 2) v122 (022 V).

by iterating overV; in arbitrary order and including 3) (1) (v2) and there exists an assignment
v1 2 V, if any of the following holds (g. 2): M N (vi; 1) (N(v2; 2)[f pog) that satis es
1) T ,[vi; V3] = true for a nodesd 2 N (pz; 2)nfveg, equation (1) withT , as the truth table, and in
i.e.,v1 embeds in a child op, other thanvs,. addition, if (v9;pz) 2 M, thenv§ 2 (pz; V).

2) vi 2 (p3;p2), i-e.,v; embeds inpd even if none

. : 0 A case analysis identical to that of lemma 4 should per-
of its children are allowed to embed Dy[p, # p3].

suade us that is built as claimed, and this concludes

3 (1) (p2) and there exists an assignmeng, algorithm and the proof of theorem 1.
M N (vi; 1) [(N(p2; 2) nfvog) [T pdg] that
satis es equation (1) witll , as the truth table, and V. KINEMATIC ADMISSIBILITY
in addition, if (v?;p3) 2 M, thenv? 2 (p3;p2).  We now extend our notion of embedding to capture

This means thav, is subsumed by, and every kinematic functionality. As mentioned previously, nodes

child of v; embeds either in a child ab, other ;|| represent rigid bodies, and edges will represent
thanvs, or in the parent of, without reusing any reyolute joints.

parts of the subtre®,[p, # pd].
A. Extending De nitions

We extend the de nition of a unit block to represent a
rigid body. A unit blockB = hog;B; ; i isarigid body
Proof. Let (p2;v2) denote the message as comwith origin og, reference framé, attachment points,
puted by the algorithm and dene (py;v2) to be and built-in functionalities . We refer toog simply as

Lemma 4. (Message Correctnesslhe process de-
scribed above computeqp,;Vv2) correctly.



B when the meaning is not ambiguous, and adopt the
convention that nodes are named with lowercase letters, .
whereas the rigid bodies they represent are named w3

the same uppercase lettexrd. nodeb will represent unit
block B, with body frameB).

Theattachment points = fBr _g:Br ,5;:::gare
the set of points wher® is connected to other unit
blocks by revolute joints. As each attachment point
attached to a single revolute joint, we sometimes ref
to attachment points by the corresponding jomg. if
joints J and K attach toB at ; and ,, we write

= fBrymp Bre=s ;iii0

Next, we associate with each edge a revolute joi
through : E 7! J, similar to for nodes. Arevolute
joint J = Hryoa;Brig ;2 0;80; ; ARBi connects a
pair of unit blocks A andB) and permits rotation about
an axis.J has attachment point&r;-, and Br g,
rotation axis speci ed by unit vectors® andBa, joint
angle , and reference orientatichRE. Thejoint-angle

of J speci es the amount of rotation abotity, relative
to the reference orientatom®R§ = ARB( = 0).
Given a xed reference orientation, we can niRB
as a function of : ARB () =exp( [*@] )ARE. Here,
[*®] is the cross-product matrix dfe.

B. Kinematic Admissibility

When we say the embeddiriy; v¢ D, is kinemat-
ically admissible we mean thatD; exactly replicates
every kinematic DoF present ID,. Intuitively, to verify
kinematic admissibility, we must nd a con guration
(set of joint angles) foD, such that for each joint in
D;, the corresponding joint iD, exactly matches its
position and axis. If we lock the position of all joints

(E2nf ¢(E1)) (those which do not correspond to joints

in D) while in this con guration, we get a kinematic
structure identical t® ;. We present a local form of this

global requirement by augmenting two of the conditions

of De nition 3:

De nition 4 (Kinematic Admissibility) Givenf such
that D; vy Dy, f is kinematically admissible if it
satis es the following two conditions.

(1) (Nodes) Lett® 2 V, embedb 2 Vi. There must
exist a position®rgo-g] and orientation[ERB ]
such that for every); 2 (N (b)) there is a unique
J02 (Ne(P) such that:

h i

BRBO- BOrJiO:BO + BrBO:B

©)
(4)

(2) (Paths) Let path ;o = a® B in G, embed edge
(a;b) 2 E;. Let(a%c%) 2 N ¢(a% be the rst edge

B
s =s

h i
BOJi - BRB

0
B OJiO

ﬁ,]l & U]
~ =1
s L'I’mi, iy / J
T A 2
= PN DN
Wy, g 4

() Nodeb2 Vi (b) Nodel’2 V2 (c) [Brgo- [BRBY

iI;ig. 3: Def. 4, 1 (nodes). In g. (c), a position and
Orientation have been found in which each child joint

of bis aligned with a corresponding child joint of.

nt

(b) Nodesa®, c® andb®in V,

(c) Conguration  ( p) under
which condition 2 is satis ed.

Fig. 4: Def. 4, 2 (paths). For pathy, = (a%c% ) to
embed edgda; b), there must be %ngle[s( Oab)] for
which Brgog =[Brgo-g] andBRB =[BRB]

of . Letk9= ((a%c®) andK = ((a;b) be
aligned; thatis, le€ry o-g = Brg-g andBetco=8

Bk . Let ( 4p) be the set of angles of all joints on
ab- There must exist joint anglgy a)] such
that:
Brgos [( a)] = hBrB°=IB (5)
BRE’ [( w)] = ER® (6)

See Fig. 3 and 4 for an illustration. The condition on
nodes ensures that whenever sdthembedsb, there is
a special positiofifrgo-g] and orientatiof®R8’] for
B’ in which some of its child edges match with all child
edges ofb. The condition on paths ensures that there
is a con guration for the path connectirfg(a) to f (b)
which actually allowst to assume this special position
and orientation.

C. Checking Kinematic Admissibility

To check (1) for a modular robot system with known
links and joints, we pre-compute solution8rgo-g
and [BRB’] for each pair of nodes in the system by
brute-force. When running the algorithm, they can be
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Time (s)

(a) Grasper (b) Walker
Fig. 6: A grasper and a walker built out of SMORES [5].

055,55 (40,55) (40,90) (70, 130) (120, 200) (200, 950) (300, 2K) (500, 2K) (1K, 4K)

Fig. 5: 2-pass against naive embedding on random trees.
x-axis is benchmark size as a function of the nodes in
the subdesign and the superdesign. Timeout is 2 hours.

quickly found by table-lookup. (2) is checked through
inverse kinematics (IK); when an edge maps to a path,
we impose the additional restriction that an IK solution
for this path must be found which allows its terminating
node to reachBrgog] and [B°RB] . IK takes time
exponential in the number of joints on the patk,, so

in practice it is the costliest operation in our algorithmFig. 7: Walker design on top and grasper design on

bottom. Red arrows show the discovered embedding.

Grasper

VI. EXPERIMENTS

The algorithms were implemented in Python on togeconds for topology. For smaller designs with 25 and 80

of graph-tool [15] and are available to the communityodes, kinematic embedding is detectecirs seconds.
at modlabupenn.org/embedding . All experiments

were run on a single core of an Intel i7 at 2.4GHz; VII. A PPLICATIONS
reported times are the average over ten repetitions. We turn to practical applications of embedding, and
The rst experiment is a topology benchmark: designdiscuss how we can perform automatic control translation
are random trees of max degree 5, and each nodefrizm the subdesign to the superdesign once a kinemati-
assigned one of two functionalities uniformly at randontally admissible embedding has been computed.
Since the naive approach is much simpler to implement,As a rst example, consider the grasper and walker
is it worthy to adopt 2-pass from a practical viewpointPobots pictured in gure 6. Both designs are built out of
Fig. 5 shows that naive quickly becomes infeasible, witSMORES modules [5]. Each SMORES module has four
2-pass outperforming it and scaling really well withDoF: three continuously rotating faces callenintables
input size. Even large instances, where designs containd one central hinge with 48C° range of motion.
thousands of nodes, are solved in almost 15 minutes.When two SMORES modules connect, the connected
In another experiment, not plotted due to space limitaces become rigidly attached; rather than representing
subdesigns are complete binary trees where each nodsush a connection with an edge, we fuse the faces into a
assigned one of two functionalities uniformly at randonsingle node which is then considered a member of both
Superdesigns are complete binary trees of twice theodules. Figure 7 shows the underlying designs and the
depth, with nodes at even depth assigned one functionainbedding found by our algorithm in under one second.
ity and nodes at odd depth assigned the other one. TheréyWe are now able to map behaviors from the grasper
2-pass mapped a complex 127 node subdesign to a 18Kthe walker. Kinematic behaviors for a modular robot
node superdesign in less than 27 minutes. design can be speci ed by gait tables containing a time-
Pro ling the algorithm, almost 67% of the time isseries of joint-angles [20]. Given a gait table for the
spentin the rst pass, and 54% is consumed in generatiggasper that produces a desired behavior (like wrapping
and solving small matchings. Kinematics are de nitelyhe arms around an object to immobilize it), we can use
the bottleneck; almost ten minutes are required for déie mapping from our algorithm to translate the gait table
signs of 200 and 500 nodes, as compared to less thana3@ achieve the same desired behavior with the walker.
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lighted automatic control translation as an application.[14] M. Park, S. Chitta, A. Teichman, and M. Yim.

In the near future, we will look into handling designs Automatic con guration recognition methods in
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