
On Embeddability of Modular Robot Designs

Yannis Mantzouratos∗†, Tarik Tosun∗‡, Sanjeev Khanna†, Mark Yim‡

Abstract—We address the problem of detecting embed-
dability of modular robots: namely, to decide automatically
whether a given modular robot design can simulate the
functionality of a seemingly different design. To that end, we
introduce a novel graph representation for modular robots
and formalize the notion of embedding through topological
and kinematic conditions. Based on that, we develop an
algorithm that decides embeddability when the two involved
designs have tree topologies. Our algorithm performs two
passes and involves dynamic programming and maximum
cardinality matching. We demonstrate our approach on real
modular robots and show that we can detect embeddability
of complex designs efficiently.

I. INTRODUCTION

Modular reconfigurable robot systems have been stud-

ied for several decades [22], [17]. These systems have

demonstrated the ability to achieve a wide range of tasks

like walking, rolling, climbing over obstacles, grasping

and carrying items for various applications, including

search and rescue [21] and waiting restaurant tables [1].

One of the most interesting aspects of modular re-

configurable robots is the ability to transform into dif-

ferent shapes to adapt to needed tasks. Techniques to

automatically determine which shapes and configurations

can accomplish a task would make these systems more

powerful. Most tasks are compositions of many sub-

tasks: for example, an assembly task could be composed

of many pick-and-place operations.

We refer to the automated, generative design of a

modular robot from a task specification as design syn-

thesis. In a generative system, it would be useful to build

systems hierarchically, building subgroups of modules

that achieve subtasks. As a first step towards design

synthesis, we consider the following problem: can we

efficiently determine if a subgroup of modules configured

for a kinematic task can be realized in a larger group

of modules configured for another kinematic task? For

example, given a subgroup of modules that can function

as a planar arm, is there a set of modules in a larger

∗ Y. Mantzouratos and T. Tosun contributed equally to this work.
† Dept. of Computer and Information Science
‡ GRASP Lab and Dept. of Mech. Eng. and Appl. Mechanics
School of Engineering and Applied Sciences, Univer-

sity of Pennsylvania, Philadelphia PA, USA. Contact:
mantzouratos@gmail.com, tarikt@grasp.upenn.edu,

sanjeev@cis.upenn.edu, yim@grasp.upenn.edu.

configuration that could serve the same function? We

call this problem the design embedding problem.

In this paper, we provide a formal definition for design

embedding via topological and kinematic conditions, and

a poly-time algorithm using dynamic programming and

matching to efficiently detect when one design can be

embedded in another design. The algorithm is intended

to be run offline on a central computer. Information about

embeddability can then be used to make decisions about

the designs. For example, Section VII discusses how

kinematic behaviors can be translated from one design

to another design that embeds it.

II. RELATED WORK

Related approaches with modular robots in the past

have included narrower optimization of specific kine-

matic linkages for manipulation problems [3], [19] as

well as a selection approach, choosing the most ap-

propriate configuration for a task from a given set of

configurations [13]. In these cases, the robot would

sense the environment for features and select the most

appropriate configuration from among a small set to

reach a goal in a locomotion task. Behaviors have also

been automatically generated by identifying functional

substructures (e.g. knees) in modular robot designs [2].

A more general approach would look at configura-

tions on a finer-grain scale. Since the system is already

modular, analyzing the capabilities of assemblages by

varying modules is natural. However, the number of

possible arrangements of modules grows exponentially

with the number of available modules, which makes the

selection approach intractable. For very simple tasks such

as locomotion in a line, fine-grain generative approaches

have been achieved using evolutionary approaches [10].

Design synthesis has been studied in the context of

automated machine design [7], [18]. However, in the

most general sense this requires an understanding of the

space of all tasks, and the relationships between module

composition and their interaction with the environment,

which is very broad.

In this work, we use graph representations of modular

robots. Existing work in graph representations of modu-

lar robots includes recognizing if two full configurations

are the same [14], identifying graph automorphisms

[12], and recognizing identical substructures for efficient

reconfiguration [11]. Our work distinguishes itself by

including task implications on configurations, defining

conditions to replicate the capabilities of a design by

replicating its structure. To our knowledge, it is the first

representation that captures the full kinematic structure

of a modular robot design; in fact it can represent any

acyclic kinematic structure composed of revolute joints.

III. PRELIMINARIES

This section provides the basic graph-theoretical con-

cepts and definitions that are used throughout the paper;

a more elaborate exposition can be found at [6].

Let G (V,E) denote an undirected graph, where V is a

set of nodes, and E ⊆ V ×V is a set of undirected edges.

Given a subset V ′ ⊆ V of the vertices, the subgraph in-

duced by V ′ is given by (V ′, {(u, v) ∈ E | u, v ∈ V ′}).

A simple path v1 vk = (v1, v2, . . . , vk) in G is a

sequence of distinct nodes in V such that for consecutive

nodes vi, vj in the path, (vi, vj) ∈ E. The length of

a path is just the number of edges it contains and the

distance between two nodes u, v ∈ V in G, denoted by

δG(u, v), is the minimum length of a path from u to v.

By convention, δG(u, u) = 0 and δG(u, v) = ∞ when

such a path does not exist.

G is called a tree if each pair of nodes is connected by

exactly one simple path. When a tree is rooted at a node

τ ∈ V , ancestors and descendants of u ∈ V are defined

as follows. Any v ∈ V such that δG(τ, v) < δG(τ, u)
and path v u does not involve τ is called an ancestor

of u with respect to τ . Similarly, any v ∈ V such that

δG(τ, v) > δG(τ, u) and path v u does not involve τ

is called a descendant of u with respect to τ . We denote

the set of descendants of a node u with respect to τ

as desc (u, τ) ⊆ V . We will write G[u ↓ τ] to denote

the subtree of G that is rooted at u and contains exactly

desc (u, τ), i.e., G[{u} ∪ desc (u, τ)].

We denote immediate descendants by N (u, τ) =
{v ∈ desc (u, τ) | δG(u, v) = 1} and call them the chil-

dren of u with respect to τ ; a node can have mul-

tiple children. An immediate ancestor is denoted by

P(u, τ) = {v ∈ V \ desc (u, τ) | δG(u, v) = 1} and is

called the parent of u with respect to τ . Each node has

one parent, except τ which has none. We can naturally

extend the above to child and parent edges, which will

be denoted by N e(u, τ) and Pe(u, τ) respectively.

Finally, a rigid body is a set of points capable of

rotation and translation in Euclidean space. Each rigid

body is defined by a body frame and origin. Reference

frames are denoted with an uppercase calligraphic letter

(e.g. W), and vectors in boldface (e.g. v). The position

of point p relative point o in frame W will be written

W
rp/o ∈ R3. The orientation of frame B relative frame

W will be written WRB ∈ SO(3).

IV. TOPOLOGICAL EMBEDDING

A. Definitions and Statement of Main Result

We now formally introduce the graph representation

of modular robotic designs that we will use throughout

our discussion of topology, and present the notion of

topological design embedding.

Definition 1. (Unit Block). A unit block B = 〈φ〉 is

an elementary rigid body capable of implementing a

prespecified set of built-in functionalities φ ∈ F .

Built-in functionality is independent of topology; e.g.,

consider a block equipped with sensors, a processor unit

or a battery. We define a partial order on unit blocks on

a functional basis: B1 � B2 if and only if φ1 ⊆ φ2.

Definition 2. (Modular Robot Design). Given a set of

unit blocks B, a robot design D = 〈G(V,E), β〉 defined

on B is a labelled, undirected graph G, where nodes of

G correspond to unit blocks through β : V 7→ B, and

edges between two nodes u and v represent a revolute

joint connecting β(u) to β(v).

In Section V-B, we will extend the definition of

unit blocks to represent rigid bodies, and map edges

to revolute joints that provide movement. For now, we

postpone discussion of kinematics until the topological

algorithm is explained completely.

Definition 3. (Design Embedding). Given two designs

D1 = 〈G1(V1, E1), β1〉 and D2 = 〈G2(V2, E2), β2〉
defined on a set of unit blocks B, and an injective

mapping f : V1 7→ V2, we say that D1 embeds in D2

with respect to f , and write D1 ⊑f D2, if and only if:

1) Functionality subsumption: ∀u ∈ V1, we have

β1(u) � β2 (f(u)).
2) Connectivity preservation: ∀(u, v) ∈ E1, there ex-

ists a simple path πuv = f(u) f(v) in G2.

3) Path disjointness: for any pair of edges with distinct

endpoints (u1, v1), (u2, v2) ∈ E1, the correspond-

ing paths πu1v1 and πu2v2
in G2 are vertex-disjoint.

In addition, for any (u, v1), (u, v2) ∈ E1, πuv1 and

πuv2
share only f(u).

In general, we refer to D1 as the subdesign and D2 as

the superdesign. Where there is no chance of confusion,

we omit f and write D1 ⊑ D2.

Fig. 1 offers the intuition behind the definition. Con-

dition (1) requires every vertex in the subdesign to map

to a vertex of equal or superior functionality in the

superdesign. Condition (2) preserves the connectivity

of the subdesign once it is embedded: nodes which

(a) Condition 1: every node at the top maps to
a node of superior functionality at the bottom.

(b) Condition 2: all edges at the top map
to distinct simple paths at the bottom.

(c) Condition 3: D1 ⊑ D2, but D1 6⊑ D3, since the
path disjointness condition is violated (red).

Fig. 1: Topological conditions for embedding.

were able to interact through the joints can still do it,

albeit maybe through longer paths. Finally, condition (3)

ensures that degrees of freedom which are independent

in the subdesign remain independent in the superdesign.

From a topological perspective, embeddability is

equivalent to whether the subdesign is a topological

minor of the superdesign; see [8] and references therein.

We are now ready to state our main result.

Theorem 1. Given two designs D1 = 〈G1(V1, E1), β1〉
and D2 = 〈G2(V2, E2), β2〉 defined over a set of unit

blocks B, where G1 and G2 are trees of maximum degree

d, there exists a deterministic algorithm that decides

whether D1 ⊑ D2 in time O(|V1| · |V2| · d
2.5).

Note that d is the maximum number of edges incident

on any node. For most real robot applications, d ≤ 5.

B. Outline of Algorithm

We now present a dynamic programming algorithm

that decides whether D1 ⊑ D2 and if so, produces a

mapping f : V1 7→ V . We focus on obtaining a yes

or no answer rather than the mapping itself; it can be

reconstructed the regular dynamic programming way, by

keeping track of the option we selected at each step in

a separate array and backtracking; see [4] for details.

We will maintain a |V1| × |V2| truth table T , where

T [v1, v2] is true under a specified rooting τ1 ∈ V1, τ2 ∈
V2 if and only if D1[v1 ↓ τ1] ⊑ D2[v2 ↓ τ2]. At the end

of the algorithm, T [τ1, τ2] answers whether D1 ⊑ D2

under τ1 and τ2; if the answer is negative, we repeat the

process for a new rooting until we either get a positive

answer or we exhaust all possible rootings, in which case

we conclude that D1 6⊑ D2.

Initially, all entries are false. We subsequently proceed

bottom-up, starting from the leaves of D1 and moving

gradually towards τ1. As the base case, we consider a

leaf v1 ∈ V1 and check whether it embeds in the leaves

of D2, setting the appropriate entries of T accordingly:

T [v1, v2] = true ⇐⇒ β1(v1) � β2(v2),

for all leaves v2 ∈ V2. Intuitively, this corresponds to

checking whether a unary design consisting of v1 is

embedded in another unary design that contains only v2,

in which case the only relevant embedding condition to

check is functionality subsumption.

Subsequently, we move towards τ2 by examining the

parents of the leaves of D2; for such a parent p2 ∈ V2,

we set T [v1, p2] to true if β1(v1) � β2(p2), or

∃v2 ∈ N (p2, τ2) such that T [v1, v2] = true.

The intuition is that either v1 is subsumed by p2, or

it is subsumed by one of p2’s children. We continue

likewise until we complete the v1-th row of T and then

repeat for another leaf of V1. At the end, we know exactly

which nodes of D2 can host the leaves of D1.

We are now ready to move up one level in D1 as

well. Let p1 ∈ V1 denote a parent of a leaf from the

previous step. Starting from nodes that are at the same

height in D2 as p1 is in D1, we set T [p1, p2] to true in

the following two cases.

The first one, which corresponds to p1 embedding

directly in p2, is triggered if β1(p1) � β2(p2) and in

addition, there exists an assignment M ⊆ N (p1, τ1) ×
N (p2, τ2) of children of p1 to children of p2 such that

|M | = |N (p1, τ1)|, and

T [v1, v2] = true ∀(v1, v2) ∈ M.
(1)

Essentially, these conditions make sure that every child

of p1 embeds in a unique child of p2.

The second case captures that while p1 might not

directly embed in p2 in the way described above, it may

still embed in one of p2’s children, i.e.,

∃v2 ∈ N (p2, τ2) such that T [p1, v2] = true. (2)

Notice that since we are proceeding bottom-up, T [p1, v2]
is filled before T [p1, p2], and therefore our computations

are always well defined.

After the p1-th row of T is calculated, we repeat for

all nodes at the same height, and then move upwards

exactly the same way until we hit τ1. Essentially, we fill

our table by performing a reverse pre-order traversal on

G1, where at each step of the traversal we process the

nodes of G2 in reverse pre-order as well. Notice that it is

not necessary to process all the leaves first, which we did

in our exposition for simplicity, as long as we process a

node only after having dealt with all of its descendants.

It only remains to show how to compute M ⊆
N (p1, τ1)×N (p2, τ2) from equation (1): we construct a

bipartite graph with N (p1, τ1) on the left side, N (p2, τ2)
on the right, and an edge (v1, v2) if and only if

v1 ∈ N (p1, τ1), v2 ∈ N (p2, τ2) and T [v1, v2] = true.

Intuitively, v1 is connected to v2 if and only if subdesign

D1[v1 ↓ τ1] embeds in D2[v2 ↓ τ2]. We subsequently

compute a maximum cardinality matching [9]. At this

point it is also possible to incorporate arbitrary user input

that explicitly disallows embedding of particular nodes.

C. Formal Analysis

Lemma 1. (Algorithm Soundness). Given designs D1

and D2, if the algorithm accepts then D1 ⊑ D2.

Proof. Suppose that the algorithm accepts and let τ1
and τ2 reflect the roots of G1 and G2 at the time the

positive answer was computed, and f : V1 7→ V2 be

the suggested mapping. Relabel nodes of both graphs to

reflect reverse pre-order, and let V1 = {u1, u2, . . . , τ1}
and V2 = {v1, v2, . . . , τ2}. We will use strong induction

on ui, i = 1, . . . , |V1|.
For the base case, let T [u1, vj] be true. Since u1 is a

leaf, D1[u1 ↓ τ1] contains only u1 and the only relevant

criterion from definition 3 is functionality subsumption.

By construction, T [u1, vj] is true if and only if the func-

tionality of β1(u1) is subsumed by either β2(vj) or one

of its children, and therefore, D1[u1 ↓ τ1] ⊑ D2[vj ↓ τ2],
for any j = 1, . . . , |V2|.

Now assume that for i ≤ k, if T [ui, vj] is true then

D1[ui ↓ τ1] ⊑ D2[vj ↓ τ2], for all j. We are going to

show that the same holds for uk+1 too. Indeed, fix an

arbitrary vj and suppose that T [uk+1, vj] = true. If uk+1

is a leaf, we are done by the argumentation above, so

assume otherwise. Recall that there are two cases which

could have forced the entry to be true.

If the first case triggered the truth assignment, then

it must be that β1(uk+1) � β2(vj) and there exists a

matching M between N (uk+1, τ1) and N (vj , τ2) such

that (1) holds. Obviously the functionality subsumption

criterion of embedding holds. By hypothesis and the fact

that M covers all the children of uk+1, connectivity is

maintained - the subdesigns rooted at the children of

uk+1 embed in children of vj , and since f(uk+1) = vj ,

every edge (uk+1, u
′) ∈ E1 corresponds to a path

utilizing (vj , v
′) ∈ E2, where (u′, v′) ∈ M . Finally,

path disjointness is also maintained. By hypothesis, we

only need to care about paths of the form πuk+1,u′ =
f(uk+1) f(u′), where u′ ∈ N (uk+1, τ1). Since

f(u′) maps to a distinct child of vj by definition of

matching (say f(u′) = v′), and f(uk+1) = vj , it follows

that each πuk+1,u′ starts with a distinct edge of the

form (f(uk+1), f(u
′)) = (vj , v

′) ∈ E2. Paths cannot

share any vertex later, since that would imply a cycle

in G2, contradicting its tree structure. Consequently, all

criteria of embedding are satisfied, and D1[uk+1 ↓ τ1] ⊑
D2[vj ↓ τ2].

The second case follows by the same argumentation

and a similar (nested) inductive argument on vj .

Lemma 2. (Algorithm Completeness). Given designs D1

and D2, if D1 ⊑ D2 then the algorithm accepts.

Proof. Suppose that D1 ⊑f D2 for f : V1 7→ V2. Let τ1
be an arbitrary node in V1, τ2 = f(τ1) ∈ V2 and consider

running the algorithm with τ1 and τ2 as the roots. As

before, relabel the nodes of both graphs to reflect reverse

pre-order; we sketch an inductive argument on V1.

As a base case, notice that D1[u1 ↓ τ1], which consists

only of u1, embeds into some D2[vj ↓ τ2] as a direct

result of the functionality subsumption criterion, where

f(u1) = vj . Therefore, T [u1, vj] is trivially true.

For the inductive step, consider uk+1 and let

f(uk+1) = vj . By the functionality subsumption cri-

terion, β1(uk+1) � β2(vj). We only need to show

that there exists a matching M satisfying (1) and we

are done – equation (2) takes care of propagating the

result upwards. By the connectivity preservance and

path disjointness criteria, it must be the case that for

every u′ ∈ N (uk+1, τ1), there exists a unique, vertex-

disjoint path πuk+1,u′ in G. While f(u′) might not be

in N (vj , τ2), vertex disjointness implies that each of

πuk+1,u′ passes through a unique, distinct child of vj .

By hypothesis then, the respective entries of T are true,

and the suggested matching will satisfy (1).

Lemma 3. (Algorithm Runtime). The algorithm pre-

sented above runs in time O(|V1| · |V2|
2 · d2.5).

Proof. For each rooting τ1 ∈ V1 and τ2 ∈ V2, we fill a

table of size |V1|×|V2|. Each entry might require solving

a matching instance on a bipartite graph of O(d) nodes,

which takes time O(d2.5) [9]. As a result, the algorithm

requires time O(|V1| · |V2| ·d
2.5) to check a fixed rooting.

Now note that based on the proof of lemma 2, we can

fix τ1 and iterate over V2 for the choice of τ2 instead of

trying all rootings. The claim follows.

D. 2-pass Approach

We now improve the runtime by a factor of |V2| to

obtain the claim of Theorem 1. As is, the algorithm

needs to try O(|V2|) rootings to decide embeddability.

Since the root τ1 ∈ V1 is fixed, let Tv be the table

computed when D2 is rooted at v ∈ V2. We show here

p
′
2

p2 . . .

v2. . .

v1. . .

τ1

(a) v1 embeds in a child of p2
other than v2.

p
′
2

p2 . . .

v2. . .

v1. . .

τ1

(b) v1 embeds in p′
2

even if
D2[p2 ↓ p′

2
] is removed.

p2

v2 p
′
2

. . .

. . .v1. . .

τ1

. . .

(c) v1 is subsumed by p2 and every child of v1 embeds either
in a child of p2 other than v2, or in p′

2
without reusing any

parts of the subtree D2[p2 ↓ p′
2
]. When this happens, it is

equivalent to re-rooting the tree at p2.

Fig. 2: The three cases of message construction.

that only two passes suffice to compute a table T ∗ such

that T ∗ [τ1, v] = true iff Tv [τ1, v] = true, ∀v ∈ V2. It is

then not hard to see that D1 ⊑ D2 iff at least one entry

of the τ1-th row of T ∗ is true.

During the first pass, we root D2 arbitrarily at τ2 ∈ V2

and compute Tτ2 as before. The second pass involves top-

down message passing. In particular, we iterate through

V2 in pre-order, starting from τ2, and each node p2 ∈
V2 forwards to every child v2 ∈ N (p2, τ2) a message

µ(p2, v2) that is equal to

{v1 ∈ V1 | D1[v1 ↓ τ1] ⊑ (D2[p2 ↓ p2] \D2[v2 ↓ p2])} .

Intuitively, µ(p2, v2) contains all nodes of V1 that can

successfully embed in p2 without using the subtree

hanging from v2. Given Tτ2 and the respective message

from the parent of p2, say p′2 ∈ V2, we compute µ(p2, v2)
by iterating over V1 in arbitrary order and including

v1 ∈ V1 if any of the following holds (fig. 2):

1) Tτ2 [v1, v
′
2] = true for a node v′2 ∈ N (p2, τ2)\{v2},

i.e., v1 embeds in a child of p2 other than v2.

2) v1 ∈ µ(p′2, p2), i.e., v1 embeds in p′2 even if none

of its children are allowed to embed in D2[p2 ↓ p′2].
3) β(v1) � β(p2) and there exists an assignment

M ⊆ N (v1, τ1) × [(N (p2, τ2) \ {v2}) ∪ {p′2}] that

satisfies equation (1) with Tτ2 as the truth table, and

in addition, if (v′1, p
′
2) ∈ M , then v′1 ∈ µ(p′2, p2).

This means that v1 is subsumed by p2 and every

child of v1 embeds either in a child of p2 other

than v2, or in the parent of p2 without reusing any

parts of the subtree D2[p2 ↓ p′2].

Lemma 4. (Message Correctness). The process de-

scribed above computes µ(p2, v2) correctly.

Proof. Let µ(p2, v2) denote the message as com-

puted by the algorithm and define µ∗(p2, v2) to be

{v1 ∈ V1 | D1[v1 ↓ τ1] ⊑ (D2[p2 ↓ p2] \D2[v2 ↓ p2])}.

To show that µ(p2, v2) ⊆ µ∗(p2, v2), suppose that

v1 ∈ µ(p2, v2) and consider what forced this decision:

1) There exists a child v′2 6= v2 such that Tτ2 [v1, v
′
2] =

true. Then, by correctness of the original algorithm,

D1[v1 ↓ τ1] ⊑ D2[v
′
2 ↓ τ2]. However, D2[v

′
2 ↓ τ2]

is a subset of D2[p2 ↓ p2], since v′2 is still in

N (p2, p2), and it does not have any nodes in com-

mon with D2[v2 ↓ p2], otherwise we would have a

cycle. It then follows that v1 ∈ µ∗(p2, v2).
2) If v1 ∈ µ(p′2, p2), then by a simple inductive

argument we obtain that v1 ∈ µ∗(p′2, p2), and since

D2[p
′
2 ↓ p′2] \ D2[p2 ↓ p′2] is just one branch of

D2[p2 ↓ p2] that does not have anything to do with

any other children of p2, the claim follows.

3) This condition is straightforward, since v2, and

therefore the subdesign hanging from it, are com-

pletely excluded from the matching process.

Opposite direction is similar and we only sketch it.

Assume v1 ∈ µ∗(p2, v2) and consider where v1 embeds:

1) In a child v′2 of p2 other than v2; but then D2[v
′
2 ↓

p2] = D2[v
′
2 ↓ τ2].

2) In the parent of p2, say p′2, without involving

p2. Then, it must be that v1 ∈ µ∗(p′2, p2) and

inductively we get µ∗(p′2, p2) = µ(p′2, p2).
3) In p2 and v2 is not included in the relevant matching.

All our conditions then follow.

Similarly, once µ(p2, v2) is passed to v2, we set

T ∗[v1, v2] to true for each v1 ∈ V1 that satisfies any

of the following conditions:

1) Tτ2 [v1, v2] = true.

2) v1 ∈ µ(p2, v2).
3) β(v1) � β(v2) and there exists an assignment

M ⊆ N (v1, τ1) × (N (v2, τ2) ∪ {p2}) that satisfies

equation (1) with Tτ2 as the truth table, and in

addition, if (v′1, p2) ∈ M , then v′1 ∈ µ(p2, v2).

A case analysis identical to that of lemma 4 should per-

suade us that T ∗ is built as claimed, and this concludes

our algorithm and the proof of theorem 1.

V. KINEMATIC ADMISSIBILITY

We now extend our notion of embedding to capture

kinematic functionality. As mentioned previously, nodes

will represent rigid bodies, and edges will represent

revolute joints.

A. Extending Definitions

We extend the definition of a unit block to represent a

rigid body. A unit block B = 〈oB ,B, α, φ〉 is a rigid body

with origin oB , reference frame B, attachment points α,

and built-in functionalities φ. We refer to oB simply as

B when the meaning is not ambiguous, and adopt the

convention that nodes are named with lowercase letters,

whereas the rigid bodies they represent are named with

the same uppercase letter (e.g. node b will represent unit

block B, with body frame B).

The attachment points α = {Brα1/B ,
B
rα2/B , . . .} are

the set of points where B is connected to other unit

blocks by revolute joints. As each attachment point is

attached to a single revolute joint, we sometimes refer

to attachment points by the corresponding joint, e.g. if

joints J and K attach to B at α1 and α2, we write

α = {BrJ/B ,
B
rK/B , . . .}.

Next, we associate with each edge a revolute joint

through γ : E 7→ J, similar to β for nodes. A revolute

joint J = 〈ArJ/A,
B
rJ/B ,

A
û, Bû, θ,ARB

0 〉 connects a

pair of unit blocks (A and B) and permits rotation about

an axis. J has attachment points A
rJ/A and B

rJ/B ,

rotation axis specified by unit vectors A
û and B

û, joint

angle θ, and reference orientation ARB
0 . The joint-angle

θ of J specifies the amount of rotation about A
û, relative

to the reference orientation ARB
0 = ARB(θ = 0).

Given a fixed reference orientation, we can find ARB

as a function of θ: ARB (θ) = exp(θ[Aû]×)
ARB

0 . Here,

[Aû]× is the cross-product matrix of A
û.

B. Kinematic Admissibility

When we say the embedding D1 ⊑f D2 is kinemat-

ically admissible, we mean that D1 exactly replicates

every kinematic DoF present in D2. Intuitively, to verify

kinematic admissibility, we must find a configuration

(set of joint angles) for D2 such that for each joint in

D1, the corresponding joint in D2 exactly matches its

position and axis. If we lock the position of all joints

γ(E2 \f
e(E1)) (those which do not correspond to joints

in D1) while in this configuration, we get a kinematic

structure identical to D1. We present a local form of this

global requirement by augmenting two of the conditions

of Definition 3:

Definition 4 (Kinematic Admissibility). Given f such

that D1 ⊑f D2, f is kinematically admissible if it

satisfies the following two conditions.

(1) (Nodes) Let b′ ∈ V2 embed b ∈ V1. There must

exist a position [BrB′/B]
∗ and orientation [BRB

′

]∗

such that for every Ji ∈ γ(N e(b)) there is a unique

J ′
i ∈ γ(N e(b′)) such that:

B
rJi/B =

[

BRB
′

]∗
B

′

rJ ′

i
/B′ +

[

B
rB′/B

]∗
(3)

B
ûJi

=
[

BRB
′

]∗
B

′

ûJ ′

i
(4)

(2) (Paths) Let path πab = a′ b′ in G2 embed edge

(a, b) ∈ E1. Let (a′, c′) ∈ N e(a′) be the first edge

b

(a) Node b ∈ V1

b'

(b) Node b′ ∈ V2

b
b'

=

=

=

(c) [BrB′/B]∗ and [BRB′

]∗

Fig. 3: Def. 4, 1 (nodes). In fig. (c), a position and

orientation have been found in which each child joint

of b is aligned with a corresponding child joint of b′.

a

b

f

(a) Nodes a and b in V1

a' c'

b'

(b) Nodes a′, c′, and b′ in V2

b
a' c' b'

(c) Configuration Θ∗(πab) under
which condition 2 is satisfied.

Fig. 4: Def. 4, 2 (paths). For path πab = (a′, c′, b′) to

embed edge (a, b), there must be angles [Θ(πab)]
∗ for

which B
rB′/B = [BrB′/B]

∗ and BRB
′

= [BRB
′

]∗

of πab. Let K ′ = γ((a′, c′)) and K = γ((a, b)) be

aligned; that is, let B
rK′/B = B

rK/B and B
ûK′ =B

ûK . Let Θ(πab) be the set of angles of all joints on

πab. There must exist joint angles [Θ(πab)]
∗

such

that:

B
rB′/B

(

[Θ(πab)]
∗
)

=
[

B
rB′/B

]∗
(5)

BRB
′ (

[Θ(πab)]
∗
)

=
[

BRB
′

]∗

(6)

See Fig. 3 and 4 for an illustration. The condition on

nodes ensures that whenever some b′ embeds b, there is

a special position [BrB′/B]
∗ and orientation [BRB

′

]∗ for

b′ in which some of its child edges match with all child

edges of b. The condition on paths ensures that there

is a configuration for the path connecting f(a) to f(b)
which actually allows b′ to assume this special position

and orientation.

C. Checking Kinematic Admissibility

To check (1) for a modular robot system with known

links and joints, we pre-compute solutions
[

B
rB′/B

]∗

and [BRB
′

]∗ for each pair of nodes in the system by

brute-force. When running the algorithm, they can be

(20, 55) (40, 55) (40, 90) (70, 130) (120, 200) (200, 950) (300, 2K) (500, 2K) (1K, 4K)

T
im

e
(s

)

0

100

200

300

400

500

600

700

800

900

1000

Timeout

2-pass
Naive

Fig. 5: 2-pass against naive embedding on random trees.

x-axis is benchmark size as a function of the nodes in

the subdesign and the superdesign. Timeout is 2 hours.

quickly found by table-lookup. (2) is checked through

inverse kinematics (IK); when an edge maps to a path,

we impose the additional restriction that an IK solution

for this path must be found which allows its terminating

node to reach [BrB′/B]
∗ and [B

′

RB]∗. IK takes time

exponential in the number of joints on the path πab, so

in practice it is the costliest operation in our algorithm.

VI. EXPERIMENTS

The algorithms were implemented in Python on top

of graph-tool [15] and are available to the community

at modlabupenn.org/embedding. All experiments

were run on a single core of an Intel i7 at 2.4GHz;

reported times are the average over ten repetitions.

The first experiment is a topology benchmark: designs

are random trees of max degree 5, and each node is

assigned one of two functionalities uniformly at random.

Since the naive approach is much simpler to implement,

is it worthy to adopt 2-pass from a practical viewpoint?

Fig. 5 shows that naive quickly becomes infeasible, with

2-pass outperforming it and scaling really well with

input size. Even large instances, where designs contain

thousands of nodes, are solved in almost 15 minutes.

In another experiment, not plotted due to space limits,

subdesigns are complete binary trees where each node is

assigned one of two functionalities uniformly at random.

Superdesigns are complete binary trees of twice the

depth, with nodes at even depth assigned one functional-

ity and nodes at odd depth assigned the other one. There,

2-pass mapped a complex 127 node subdesign to a 16K

node superdesign in less than 27 minutes.

Profiling the algorithm, almost 67% of the time is

spent in the first pass, and 54% is consumed in generating

and solving small matchings. Kinematics are definitely

the bottleneck; almost ten minutes are required for de-

signs of 200 and 500 nodes, as compared to less than 30

(a) Grasper (b) Walker

Fig. 6: A grasper and a walker built out of SMORES [5].

Fig. 7: Walker design on top and grasper design on

bottom. Red arrows show the discovered embedding.

seconds for topology. For smaller designs with 25 and 80

nodes, kinematic embedding is detected in < 5 seconds.

VII. APPLICATIONS

We turn to practical applications of embedding, and

discuss how we can perform automatic control translation

from the subdesign to the superdesign once a kinemati-

cally admissible embedding has been computed.

As a first example, consider the grasper and walker

robots pictured in figure 6. Both designs are built out of

SMORES modules [5]. Each SMORES module has four

DoF: three continuously rotating faces called turntables

and one central hinge with a 180o range of motion.

When two SMORES modules connect, the connected

faces become rigidly attached; rather than representing

such a connection with an edge, we fuse the faces into a

single node which is then considered a member of both

modules. Figure 7 shows the underlying designs and the

embedding found by our algorithm in under one second.

We are now able to map behaviors from the grasper

to the walker. Kinematic behaviors for a modular robot

design can be specified by gait tables containing a time-

series of joint-angles [20]. Given a gait table for the

grasper that produces a desired behavior (like wrapping

the arms around an object to immobilize it), we can use

the mapping from our algorithm to translate the gait table

and achieve the same desired behavior with the walker.

(a) SuperBot subdesign [16]. (b) SMORES superdesign.

Fig. 8: SuperBot Design embeds in SMORES design.

More importantly, the same idea can be extended ac-

cross different modular robot systems. As an illustration,

our algorithm detects that the SuperBot design [16] of

fig. 8a embeds in the SMORES design of fig. 8b, and

in general, it can be shown that a SuperBot module

always embeds in a design of two SMORES modules.

Detecting such embeddings automatically and using them

to translate behaviors between platforms could save time

for researchers who would otherwise try to re-create be-

haviors manually, especially when working on complex

designs where embeddability is not as straightforward.

VIII. CONCLUSION AND FUTURE WORK

We developed and implemented a poly-time algorithm

to decide if a given modular robot design can be embed-

ded into another design. The algorithm processes real-life

designs in a matter of seconds and scales well with input

size. We also formalized the notion of embedding, based

on graph representations of modular robots, and high-

lighted automatic control translation as an application.

In the near future, we will look into handling designs

with a small number of cycles and decreasing the runtime

of kinematic checking. In the longer term, we will

move from detecting embeddability to design synthesis.

We believe that our embedding approach is a useful

starting point for this line of research, and have obtained

promising preliminary results.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of

NSF grant CCF-1138847.

REFERENCES

[1] S. Balakirsky, S. Chitta, G. Dimitoglou, J. Gorman,

K. Kim, and M. Yim. Robot challenge [competi-

tions]. Robot. Automat. Mag., 19:9–11, 2012.

[2] S. Bonardi, M. Vespignani, R. Moeckel,

J. Kieboom, S. Pouya, A. Sproewitz, and

A. Ijspeert. Automatic generation of reduced

CPG control networks for locomotion of arbitrary

modular robot structures. In Proc. RSS, 2014.

[3] I.M. Chen and J.W. Burdick. Determining task

optimal modular robot assembly configurations. In

Proc. ICRA, 1995.

[4] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.

Intro. to Algorithms, chapter 15, pages 394–395.

MIT Press, 3rd edition, 2009.

[5] J. Davey, N. Kwok, and M. Yim. Emulating self-

reconfigurable robots: Design of the smores system.

In Proc. IROS Conf., 2012.

[6] R. Diestel. Graph Theory, chapter 1. Springer, 4th

edition, 2010.

[7] S. Finger and J. Rinderle. A transf. appr. to me-

chanical design using bond graph grammer. 1990.

[8] M. Grohe, K. Kawarabayashi, D. Marx, and P. Wol-

lan. Finding topological subgraphs is fixed-

parameter tractable. In Proc. 43rd STOC, 2011.

[9] J. Hopcroft and R. Karp. An n5/2 algorithm for

maximum matchings in bipartite graphs. SIAM J.

Comput., 2(4):225–231, 1973.

[10] G. Hornby, H. Lipson, and J.B. Pollack. Evolution

of generative design systems for modular physical

robots. In Proc. ICRA, 2001.

[11] F. Hou and W. Shen. Graph-based optimal recon-

figuration planning for self-reconfigurable robots.

Robotics and Autonomous Systems, 2013.

[12] B. McKay. Nauty user’s guide (v2.4). Computer

Science Dept., Australian Nat. Univ., 2007.

[13] R. O’Grady, R. Gross, F. Mondada, M. Bonani, and

M. Dorigo. Self-assembly on demand in a group

of physical autonomous mobile robots navigating

rough terrain. In Proc. 8th ECAL, 2005.

[14] M. Park, S. Chitta, A. Teichman, and M. Yim.

Automatic configuration recognition methods in

modular robots. Int. J. Robot. Research, 2008.

[15] T. Peixoto. The graph-tool python library.

http://graph-tool.skewed.de/, 2014.

[16] B. Salemi, M. Moll, and W. Shen. SUPER-

BOT: Deployable, multifunctional, and modular

self-reconfigurable system. In Proc. IROS., 2006.

[17] K. Stoy, D. Brandt, and D. Christensen. Self-

reconfigurable robots: An Intro. MIT Press, 2010.

[18] K. Ulrich and W. Seering. Synthesis of schematic

descriptions in mechanical design. Res. in Eng.

Design, pages 3–18, 1989.

[19] G. Yang and I.M. Chen. Task-based optimization

of modular robot configurations: minimized DoF

approach. Mechanism and machine theory, 2000.

[20] M. Yim. Locomotion with a unit-modular reconfig-

urable robot. PhD thesis, Stanford, 1994.

[21] M. Yim, D. Duff, and K. Roufas. Modular recon-

figurable robots: an approach to urban S&R. 2000.

[22] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll,

H. Lipson, E. Klavins, and G. Chirikjian. Modular

self-reconfigurable robot systems. Robot. Automat.

Mag., 2007.

