
IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021 1

A Linking Invariant for Truss Robot
Motion Planning
Alexander Spinos1 and Mark Yim1

Abstract—In this paper, we introduce a new invariant of C-
space components for truss robots: the link-augmented graph.
This invariant uses techniques from knot, link, and spatial
graph theory to encode the linking information between different
closed chains in the robot. For robots with a disconnected free
configuration space, this invariant serves as a tool to distinguish
robot configurations that lie in different connected components
of C-space from each other. This can be used to eliminate
goal positions that are unreachable by any collision-free motion,
without needing to perform any probabilistic planning. This
invariant can also be used to find appropriate assignments of node
labels in a specified goal position. We demonstrate the advantages
of using this invariant in conjunction with a probabilistic planner,
and introduce a variant of RRT-Connect to simultaneously search
for all valid goal labelings.

Index Terms—Motion and Path Planning, Computational Ge-
ometry, Cellular and Modular Robots

I. INTRODUCTION

IN this paper, we introduce a method for characterizing the
configurations of certain types of robots. This technique is

particularly useful for truss robots, in which the kinematic
structure is that of a rigid truss. However, it can also be
applied any robotic system that exhibits some closed kine-
matic structure that may become tangled, such as chain-style
modular robots [1]. Variable Geometry Trusses (VGTs) are
formed by taking a truss structure and replacing some or all
of the members with linear actuators [2]. This type of robot has
classically been used for parallel manipulators [3], long chain
actuators, collapsible structures for space applications [4],
[5], and locomotion platforms. More recently, other actuation
schemes have been explored to create soft truss robots [6].
Tensegrity robots are a popular class of truss robot that
combine flexible cables with rigid struts to create flexible and
robust robotic structures [7].

Trusses naturally have a modular structure. Many others
have explored making the truss elements out of composable
modules that can be combined to form various shapes [8], [9],
[10]. Our prior work has introduced the Variable Topology
Truss (VTT), a modular self-reconfigurable truss robot [11],
[12]. VTT can change its shape by merging and splitting the

Manuscript received September 9, 2021; Revised December 5, 2021;
Accepted December 20, 2021.

This paper was recommended for publication by Editor Stephen J. Guy
upon evaluation of the reviewers’ comments.

1 Alexander Spinos and Mark Yim are with the Department of
Mechanical Engineering and Applied Mechanics, University of Penn-
sylvania, Philadelphia, PA 19104, USA spinos@seas.upenn.edu,
yim@seas.upenn.edu

Digital Object Identifier (DOI): see top of this page.

(a)

(b)

(c)
Fig. 1. One example of the type of robot this work applies to: the
Variable Topology Truss system. (a) A hardware prototype demonstrating the
reconfiguration capability. (b, c) Two configurations that a 27-member VTT
system could transform between.

truss nodes in addition to changing the length of the truss
members. A hardware prototype is shown in Fig. 1.

Truss robots are highly structurally efficient and have many
of the benefits associated with parallel robots, including in-
creased stiffness and precision. However, motion planning for
truss robots is very difficult due to the self-collision obstacles
between the members. The dimensionality of the configuration
space is very high, and often the members are tangled in such
a way that certain motions are impossible. In these cases, the
configuration space may consist of many disconnected regions.

In our prior work, we have demonstrated the success of
probabilistic planners with VTT when the problem can be
reduced to moving a small number of nodes at a time [13].
This prior work leverages the ability of VTT to avoid self-
collision obstacles by reconfiguring its topology. However,
the reconfiguration process typically bears a high cost, being
both time consuming and error-prone. Most modular robots,
including VTT, need to precisely align their connectors to
successfully dock two modules. Not only that, but the vast
majority of truss robots cannot reconfigure their topology at
all. Therefore, we are interested in finding out precisely when
collision-free paths to a desired goal exist without requiring
reconfiguration.

One could attempt to run a probabilistic planner to answer
this question, but probabilistic planners can rarely determine
that a path does not exist. The high dimensionality and many
narrow passages in the configuration space of most truss robots

This accepted article is made available by the authors in compliance with IEEE policy.
Please find the final, published version in IEEE Xplore, DOI: 10.1109/LRA.2021.3139941.

c©2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://doi.org/10.1109/LRA.2021.3139941


2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021

mean that checking the existence of a path with a probabilistic
planner to a high degree of confidence can be very expensive.
For this reason, we want to avoid the use of probabilistic
planners unless we have high confidence that a path to the
goal does exist.

In this paper, we introduce a C-space component invariant—
the link-augmented graph—that can be calculated from a given
truss configuration. We explore two useful applications of the
invariant in this work. First, the link-augmented graph can be
used to quickly identify situations where a path from a start
configuration to a goal configuration is impossible. Second, in
cases where the robot consists of re-labelable modules, this
graph can be used to generate label choices that could result
in a possible path.

II. INTRODUCING AN INVARIANT FOR ROBOTS WITH
LINKED KINEMATIC STRUCTURE

We start by giving a concrete example. Fig. 2 shows three
configurations of a truss robot. We can see that there is no
straightforward collision-free path from configuration 2a to
configuration 2b. The truss member (5, 6) would collide with
truss member (1, 7), and attempting to move around this
obstacle only results in further collision. In fact, it turns out
that the configuration space of this robot is disconnected. In
a non-reconfigurable VGT, there is no path between configu-
rations 2a and 2b. In a self-reconfigurable truss robot such
as VTT, this obstacle could be avoided using topological
reconfiguration.

Similarly, there is also no collision-free path from configu-
ration 2a to configuration 2c without reconfiguration. How-
ever, this situation is slightly different. In robotic systems
with interchangeable robot modules, the specific labeling of
modules is not important. We can see that if we were to
swap the label of node 1 with node 4, node 2 with node
3, and node 5 with node 6—that is, apply the permutation
(1 4)(2 3)(5 6)—then configuration 2c can be reached simply
by rotating configuration 2a. By allowing this relabeling, a
previously impossible path for a VGT was made possible,
and a path with many reconfiguration steps for a VTT was
simplified to involve no reconfiguration.

From a multi-robot systems perspective, this can be con-
sidered a variation of the goal assignment problem [14].
However, the tight coupling of the self-collision obstacles
to the node positions in a tangled truss robot mean that
general purpose multi-robot planning techniques are ill-suited.
From a modular robotics perspective, this can be considered a
variation of the configuration matching and mapping problem,
where the goal configuration may be selected from some
library of configurations and the current configuration needs
to be relabeled to match the goal [15]. However, the prior
work in modular robotics only considers the graph structure
of the modular system, i.e. the logical description of which
modules are connected to which other modules. For truss
robots such as VGTs or VTT, we refer to this graph structure
as the topology of the truss. However, in the given example, all
of the configurations already have a matching topology. The
topology alone fails to capture important spatial characteristics

(a) (b) (c)
Fig. 2. Three truss robot configurations with the same topology.

of the robot configuration. In this work, we provide a method
for encoding this spatial information along with the robot
topology, which forms a C-space component invariant of the
robot configuration.

A. Invariants of Configuration Space Components

We define the C-space of the robot to exclude self-collision
obstacles, so the C-space may consist of several connected
components. We then define a C-space component invariant
to be any property that can be computed from a given
robot configuration that remains constant throughout any self-
collision-free motion of the robot. This concept is analogous
to the concept of a knot invariant in knot theory [16]. If two
robot configurations yield different results when computing
the value of the invariant, then there is certainly no collision-
free path between them. They must lie in different connected
components of the robot C-space. If two robot configurations
yield the same result, then there may be a path between
them. Either they lie in the same connected component of C-
space, or two different connected components happen to yield
the same value of the invariant. An invariant is considered
relatively stronger when it is less likely that two different
connected components yield the same value, and complete if
every connected component yields a unique value.

Configurations of truss robots such as VGTs or VTT can be
fully represented by a graph G(V,E) and an embedding func-
tion P : V 7→ R3. The vertices (V ) of the graph correspond
to the set of truss nodes and the edges (E) correspond to the
set of truss members. The embedding function P specifies the
location of each truss node in 3D space. Other modular robot
systems can be represented in a similar way.

B. Invariants of Spatial Graphs

A more general notion of a graph embedded in 3D space is
known as a spatial graph. Prior work on spatial graphs defines
equivalence with respect to ambient isotopy [17]. The edges of
a spatial graph may follow any tame arc (any arc equivalent to
a piecewise linear path) through space between the endpoints.
In this case, the embedding function P must also specify the
path of each edge. Truss robots belong to the stricter class of
linear spatial graphs, where the edges must be straight lines.
Thus, any invariant of a spatial graph is also an invariant of a
linear spatial graph.

A simple but powerful invariant of spatial graphs was
introduced by Kauffman [17]. For a spatial graph (G,P ),
the invariant T (G,P ) is the collection of knots and links



SPINOS et al.: A LINKING INVARIANT FOR TRUSS ROBOT MOTION PLANNING 3

embedded in the graph. A knot is simply a single tame closed
curve in space, whereas a link can have multiple closed curves.
To extract a knot or link from a spatial graph (G,P ), we can
delete edges in the graph until each vertex has at only two
or zero incident edges, and the result will be a closed cycle
or set of closed cycles. T (G,P ) is computed by applying all
possible choices of deleting edges in this way, identifying the
result, and adding it to the collection.

This method is particularly useful because it converts a
problem about spatial graphs to a problem about knots and
links, which are much more well understood. In contrast,
methods that operate on the spatial graph directly tend to
be difficult to compute or are limited to graphs with specific
vertex types. For example, the Yamada polynomial is a spatial
graph invariant that is limited to flat vertex graphs or pliable
vertex graphs with maximum degree less than four [18]. The
invariant introduced in this paper is suitable for the most
general type of spatial graph—pliable vertex graphs with
unbounded maximum degree.

The invariant introduced in this paper will begin with the
same decomposition of the graph to a set of knots or links.
However, T (G,P ) discards important information about the
graph structure. For example, T (G,P ) makes no distinction
between a simple loop formed by three edges and a simple
loop formed by four edges. Although these shapes are equiv-
alent in an ambient isotopic sense, in reality there is no way
for a chain of three robot modules to smoothly change to a
chain of four robot modules. Our new invariant captures this
distinction, which is particularly useful for robot systems that
exhibit greater diversity in their graph structure than they do in
their ambient isotopic structure, such as chain-style modular
robots [19].

C. The Link-Augmented Graph

In this section, we introduce a new invariant for truss
robots, the link-augmented graph, denoted L(G,P ), and its
canonical isomorph C(L(G,P )). An example of constructing
this invariant is given in Fig. 3. The input to the procedure is
a linear spatial graph that represents the robot configuration.
The input used in the example is a simplified version of the
truss robot shown in Fig. 2. The number of truss nodes is the
same, but several members have been removed to make the
calculation manageable by hand.

We first compute all edge-induced subgraphs such that all
vertices have degree two or zero. In the given example, there
are three such subgraphs, shown in Fig. 3b. The result is a set
of graphs in which each graph is composed of one or more
cycles. That is, each graph corresponds to a link diagram when
taken with its embedding. At this stage, one could compute
T (G,P ). In the example, the first two subgraphs correspond
to the Hopf link, while the third corresponds to the unlink.
The value of T (G,P ) is then simply {HopfLink, UnLink}.

When computing L(G,P ), we make the following sim-
plification for computational efficiency. Rather than fully
identifying the resulting knots and links, we simply compute
pairwise linking between cycles in each subgraph. This is
done by calculating the linking number for each pair of cycles

(a) →

(b)

(c)

(d)

Fig. 3. Generating the link-augmented graph. (a) The truss configuration is
represented as a linear spatial graph. (b) Generate all possible edge-induced
subgraphs that result in a set of cycles. (c) Compute a graph representing
the linking between each pair of cycles in each subgraph. (d) Connect these
linking graphs to the original graph.

using Gauss’s linking integral. The orientation of the cycles
is not well-defined, so we do not consider the sign of the
linking number. We also do not consider multiply linked loops,
saving only the binary state of linked or unlinked, as the
multiply linked cases are fairly rare. One advantage of this
simplification is that the linking integral can be computed
directly on the three-dimensional vertex locations of the spatial
graph. More sophisticated topological tools, such as knot
polynomials, typically require finding a regular projection of
the structure and computing the crossing information in the
projection [16].

We can represent the result of the pairwise linking calcula-
tion by another set of graphs, which we term linking graphs.
Each vertex in these linking graphs corresponds to a cycle in
the original graph G, and the vertices are connected by an
edge if the cycles are linked. The set of linking graphs for
the given example is shown in Fig. 3c. The concept of using
the linking graph as a topological invariant for a set of loops
has been used in computer graphics to verify calculations on
linked structures such as chainmail [20].

Finally, the link-augmented graph L(G,P ) is constructed.
Each vertex in the linking graphs is added to the original graph
G by connecting it to all of the vertices in the cycle that
it represents. These newly added vertices are given a unique
color to distinguish them from the original vertices in G. This
coloring must be preserved during isomorphism checking or
canonicalization. Note that L(G,P ) is not a spatial graph.
The embedding function P is used for calculating L(G,P ),
but L(G,P ) itself is not embedded in any space.

If relabeling the nodes in the graph is not allowed, then
L(G,P ) suffices as an invariant. This corresponds to the
case where each robot module is unique, and module labels



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021

must be preserved. However, if we are allowed to relabel
the robot modules, then the isomorphism class of L(G,P ) is
the relevant invariant. Returning to the example from Fig. 2,
we can denote the three configurations as (G,PA), (G,PB),
and (G,PC). Then, L(G,PA), L(G,PB), L(G,PC) will be
different graphs, but L(G,PA) will be isomorphic to L(G,PC)
and not isomorphic to L(G,PB). To conveniently compare
the isomorphism class of L(G,P ), we can put the graph
into its canonically labeled form: C(L(G,P )). If two graphs
are isomorphic, then their canonically labeled forms will be
identical.

This invariant can be slightly modified to support cases
where the robot system consists of a heterogeneous set of
modules. If only modules of the same module type may
interchange labels, the vertices of the original graph G can
be colored according to module type. Then, the relevant
isomorphism class is restricted to isomorphisms that preserve
this coloring.

D. Limitations

The link-augmented graph is not a complete invariant of
the robot configuration. That is, there may be pairs of start
and goal configurations that are not connected by a collision-
free path, and yet yield the same link-augmented graph. One
weakness is that we do not attempt to classify graph cycles
as knots. Therefore, a truss that embeds a trefoil in one of its
cycles may be indistinguishable from one that only embeds an
unknotted loop. Similarly, we only check for pairwise linking
between cycles. This fails to distinguish more complicated
types of linking—such as the Whitehead link or Brunnian
links—from unlinked loops [16]. This invariant could be
strengthened by detecting these cases and assigning special
colors to the nodes and edges of the linking graphs, at the
cost of considerable added complexity.

III. RELABELING GOAL CONFIGURATIONS USING THE
LINK-AUGMENTED GRAPH

Given a start configuration (GS , PS) and a goal config-
uration (GG, PG), we can use this invariant to determine
when a collision-free path may be possible. If a path might
possible under some node relabeling, we also compute this
relabeling. The goal graph GG must be isomorphic to GS ,
but it need not be identical. In this work, we relabel the goal
configuration to be achievable by the start configuration. That
is, the goal configuration will be transformed to the form
(π(GG), π(PG)), where π is some permutation that takes GG

to GS . In some applications, it may be desirable to relabel the
current configuration to match the goal configuration instead.

We begin by computing the link-augmented graph of the
start and goal configurations, and placing each into canonical
form. If the resulting canonical link-augmented graphs are
not equivalent, then no collision-free path exists between the
configurations. If the canonical link-augmented graphs are
equivalent, then a collision-free path may exist. However, some
relabeling may be necessary first.

The canonical forms of the link-augmented graphs induce
permutations on the original graphs GS and GG. That is, by

computing C(L(GS , PS)), we obtain the permutation σ that
transforms L(GS , PS) to C(L(GS , PS)). We can restrict σ to
a permutation σ̂ on only the original vertices in GS . This re-
stricted permutation is closed over the vertices in GS because
the canonicalization preserves the graph coloring. Similarly,
we obtain the permutation γ that transforms L(GG, PG) to
C(L(GG, PG)) and its restriction γ̂. Then, permuting the goal
configuration by σ̂−1γ̂ yields a configuration with the same
link-augmented graph as the start configuration, yet in the
same shape as the goal position.

However, this permutation is not necessarily the only one
that yields a goal position with the correct value of the
invariant. In fact, for the example given in Fig. 2, there
are two permutations that yield the correct link-augmented
graph: (1 4)(2 3) and (1 4)(2 3)(5 6). Of these, only the latter
results in a goal configuration that is reachable by the start
configuration. This is because the link-augmented graph of this
configuration has some symmetry—more precisely, it has a
nontrivial automorphism group. When restricted to the original
graph, this induces a nontrivial automorphism group which
corresponds to the permutation (5 6).

We can account for this by enumerating all automorphisms
of L(GG, PG). Then, restrict those automorphisms to auto-
morphisms on the original nodes in GG. Finally, permute each
of those automorphs of GG by σ̂−1γ̂ to get a set of possible
goals. If there is a node permutation that results in a reachable
goal configuration, then it must be one of these possible goals.

A. Computational Complexity and Practical Running Time

The first step of calculating the link-augmented graph is
finding all of the relevant edge-induced subgraphs that produce
sets of cycles. If a node in the graph has degree d, there are
d(d−1)/2 choices to delete edges at that node. These choices
must be made for each node, so the number of graphs produced
can be exponential in the number of nodes. For most graphs
that correspond to practical physical structures, edges tend to
be deleted fast enough that this step terminates in a reasonable
time. In the examples shown in this paper, the running time
for this step is always less than 1 second. Additionally,
this calculation does not depend on the embedding of the
truss. When evaluating multiple configurations with the same
topology, this set of graphs only needs to be computed once
and can be reused thereafter.

In this work, the linking number is computed using Gauss’s
integral. This calculation is straightforward and efficient for
paths defined by a small number of straight-line edge seg-
ments [21]. For larger and more complicated structures, more
sophisticated techniques exist for accelerating this computation
[20].

We use nauty to put the link-augmented graph in canonical
form. This calculates a set of generators for the automor-
phism group as a side effect of canonicalization [22]. Graph
canonicalization is theoretically very complex in the worst
case, but nauty is quite efficient for graphs with a relatively
small number of nodes. To reduce the number of nodes in the
link-augmented graph, we slightly modify the algorithm as
described in Section II. If a linking graph contains no edges,



SPINOS et al.: A LINKING INVARIANT FOR TRUSS ROBOT MOTION PLANNING 5

we do not add it to the link-augmented graph. This does not
discard any information that could not be recovered from G
alone, so the strength of the invariant is the same. However,
trusses that are not highly linked produce link-augmented
graphs with far fewer nodes, which can be processed by nauty

more efficiently.

IV. PLANNING WITH MULTIPLE POSSIBLE GOALS

If a path can be found to any of the possible goal positions,
then the goal configuration can be reached and planning is a
considered a success. Any standard probabilistic planner can
be used to sequentially attempt to find a path to each possible
goal. However, if a single-query planner is used, this wastes
time re-exploring the space near the start position for each
attempt.

To improve the efficiency of this process, we introduce RRT-
Connect-Any, a variant of RRT-Connect [23]. Standard RRT-
Connect builds two search trees, one rooted at the start and
one at the goal. The fundamental step is to grow one tree,
then attempt to connect the other tree to the new vertex using
a greedy heuristic. The roles of the trees are then swapped and
the process repeats, alternating between the two trees until a
connection is made.

In RRT-Connect-Any, we build one tree rooted at the start
and additional trees rooted at each of the possible goals. The
start tree always participates in each step, while the goal trees
are cycled through one at a time. This way, 50% of the samples
are used to build the start tree, and the remaining 50% of
samples are distributed among the different goal trees. This
strategy prevents pathological behavior when the number of
possible goals is very large; in such cases RRT-Connect-Any
will behave similarly to unidirectional RRT. When there is
only one possible goal, RRT-Connect-Any is identical to RRT-
Connect.

V. RESULTS

A. Invariant Strength

In this section, we present some results that demonstrate
the usefulness of the canonical link-augmented graph as an
invariant. First, we investigate the distinguishing power of the
invariant. Figure 4 shows four example trusses. For each of
these trusses, we generate 100,000 random configurations and
check how many different canonical link-augmented graphs
we find. Truss configurations are generated by randomly
drawing each node position from a uniform distribution within
the unit cube. Configurations that are in collision or very close
to collision are discarded and replaced.

The results are given in Table I. For each truss, we give
the total number of different values of the invariant that were
found. This number gives a lower bound on the number of
disconnected regions in the robot configuration space. We can
see that trusses with more nodes have a highly disconnected
configuration space, with thousands of different regions.

These values do not occur with equal probability. Some
occur quite frequently, whereas others correspond to quite
delicate and rare configurations. The table gives the number
of the most common values that account for at least 50%

(a) (b)

(c) (d)

Fig. 4. Four example trusses. (a) An octahedron with 6 nodes and 12
members. (b) An overconstrained truss with 7 nodes and 18 members. (c) An
octahedron with two attached tetrahedra, totaling 8 nodes and 18 members.
(d) A tower of stacked tetrahedra, totaling 9 nodes and 21 members.

TABLE I
CALCULATING C(L(G,P )) FOR 100,000 RANDOM CONFIGURATIONS

Truss 1 Truss 2 Truss 3 Truss 4

Num Unique Values 4 567 2782 25945
Num to Cover 50% 1 8 7 152
Chance of Match 0.44 0.042 0.061 0.026
Time to Calc Subgraphs 0.013 s 0.19 s 0.12 s 0.20 s

of configurations. The table also gives the probability that
two randomly sampled configurations will have a matching
invariant value. It is interesting that Truss 3 has a higher
chance that two random configurations share the same value
compared to Truss 2, despite having a larger total number of
possible values.

Finally, the table lists the time to compute the set of edge-
induced subgraphs for each graph. This only needs to be
calculated once for each of the example trusses.

In this paper, we are interested in a general planning query
where the goal position may be anywhere in the configuration
space of the robot. The results in Table I show that this space is
highly disconnected, motivating the use of the link-augmented
graph. Since it is unlikely that two random configurations will
have a matching value, the link-augmented graph can provide a
quick answer to the majority of planning queries. On the other
hand, if the goal position is selected so that it is likely to lie
in the same component of C-space, then the link-augmented
graph may be less useful—for example, by sampling very
close to the start position.

B. Planning

Next, we investigate using this invariant along with a simple
probabilistic planner. For each of the example trusses, we
generate 10,000 pairs of random configurations and attempt
to plan a path between them. The first step is to compute



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED DECEMBER, 2021

the canonical link-augmented graph for both start and goal
configurations. We assume that the appropriate set of edge-
induced subgraphs has been computed beforehand, and doesn’t
need to be recomputed for each query. If the canonical link-
augmented graphs don’t match, planning is skipped because
a path is impossible. If the canonical link-augmented graphs
do match, then the relevant permutations and the list of
automorphisms are calculated to produce a set of possible
goals. We then run RRT-Connect-Any to try to reach any
goal from the start point. If any goal is reached, we consider
the planning a success. If the maximum number of samples
(10,000) is reached without finding a goal, the planner times
out.

The results are given in Table II. First, the table gives the
overall average execution time for a query. This is broken
down into the times for each part of the algorithm. It gives the
average time to compute the canonical link-augmented graphs,
denoted C(L), then the average time to run RRT-Connect-Any
if necessary. The running time of RRT-Connect-Any is further
broken down into average times for success and time-out. The
results show that computing the value of this invariant is much
faster than running a probabilistic planner.

Next, Table II gives the number of times the invariant values
matched, which corresponds to the number of attempts to run
RRT-Connect-Any. Of those, it gives the number of planning
attempts that successfully found a path. Finally, it gives the
number of times that the result is certain; that is, either it found
a path or it found that no path can exist.

The number of times the invariant matched during these
planning attempts corresponds with our expectations from
Table I. Attempts to run RRT-Connect-Any are likely to
succeed for Trusses 1–3, which suggests that the invariant can
distinguish reasonably well between different connected com-
ponents of the configuration space in these cases. However,
the success ratio begins to drop for Truss 4, which has more
nodes and members than the other examples. This is likely
because knots and link types that are not distinguished by this
invariant become more prevalent as the number of members
grows. For example, it is known that every embedding of the
K7 graph contains a trefoil knot [24].

Another contributing factor is that all of the planning
attempts in this experiment use the same sampling limit. We
might expect that more complicated trusses will require more
samples to have an equivalent success ratio, even in cases
where the start and goal are in the same connected component.
However, the ratio of planning time for a success to that of a
time-out is fairly similar for Trusses 2–4, so we do not expect
this factor to have a large impact.

Although the probabilistic planning success ratio is reduced
for Truss 4, the link-augmented graph is still powerful enough
to skip 9,721 out of the 10,000 planning queries. If every
failure of the probabilistic planner were due to spurious
collision in the invariant value, then a perfectly complete
invariant could skip at most 243 additional planning attempts.
This high distinguishing power is because Truss 4 can exhibit
a rich variety of ways that its loops can be pairwise linked. We
would expect this particular invariant to be less useful in cases
where the robot is more likely to be knotted than linked, such

TABLE II
PERFORMANCE OF 10,000 RANDOM PLANNING ATTEMPTS

Truss 1 Truss 2 Truss 3 Truss 4

Mean Time per Query 0.51 s 0.31 s 0.39 s 0.54 s

Breakdown:
Time to Calculate C(L) 0.019 s 0.024 s 0.030 s 0.080 s

Time to Run RRT-C-A 1.1 s 6.3 s 5.9 s 16.4 s

Case 1: Found Path 0.13 s 3.7 s 3.0 s 8.4 s

Case 2: Timed Out 4.7 s 8.5 s 9.6 s 17.5 s

Number of Occurrences:
C(L) Values Matched 4480 455 602 279
RRT-C-A Found a Path 3536 209 334 36
Result is Certain 9056 9754 9732 9757

as in a chain-style modular robot system with long strings of
modules and few branches [1].

C. Comparison with Other Methods

In this section, we demonstrate the advantage of the
invariant-based technique over more traditional techniques.
Using Truss 2, we generate 5,000 pairs of random configu-
rations. On each pair, we try three methods to find whether
a path between them exists. For the first method, Single, we
simply run RRT-Connect between the start and the goal. This
is simple, but it misses out on the opportunity to find goals that
are only reachable by relabeling. For the second method, All,
we run RRT-Connect-Any using all possible automorphisms
of the goal configuration. This only uses the graph topology,
and does not compute any linking information. For Truss 2,
there are 12 automorphisms of the graph, so each planning
attempt will simultaneously search for 12 goals. This should
eventually find a path if one exists, but it will spend much more
time investigating the space around unreachable goal points.
This will increase the running time, and the less efficient use
of samples means that the planner is more likely to terminate
before it finds a solution, should one exist. Finally, we use
the procedure from Section V-B, which computes the link-
augmented graph to avoid searching for unreachable goals.
This method is denoted Match in the table. This should have
a success ratio at least as good as that of the second method,
with a much faster running time.

The results are shown in Table III. Since the maximum
number of samples is fixed, the average planning times for
Single and All are about the same. However, Match can skip
planning when the invariants do not match, so the average time
is much lower. Match also has an even higher success ratio
than expected. This is likely because the much more efficient
use of samples means that more complicated paths can be
discovered before the planner hits the sampling limit. Of the
199 planning attempts for Match, 173 of them only needed to
search for one or two goals.

Lastly, the traditional probabilistic methods can only answer
with certainty when a path is found. In many cases, Match can
provide a definitive answer that no path exists, in which case
it is included as a certain result at the bottom of Table III.



SPINOS et al.: A LINKING INVARIANT FOR TRUSS ROBOT MOTION PLANNING 7

TABLE III
COMPARISON OF THREE PLANNING APPROACHES ON 5,000 RANDOM

START-GOAL PAIRS WITH TRUSS 2

Single All Match
Mean Time per Query 8.53 s 8.51 s 0.28 s

Breakdown:
Time to Calculate C(L) – – 0.025 s

Time to Run RRT 8.53 s 8.51 s 6.39 s

Case 1: Path Found 2.32 s 2.72 s 4.13 s

Case 2: Timed Out 8.55 s 8.56 s 8.59 s

Number of Occurrences:
C(L) Values Matched – – 199
Planner Found a Path 13 43 98
Result is Certain 13 43 4899

VI. CONCLUSION

The link-augmented graph is a powerful C-space component
invariant for truss robots, and it can be extended to other robot
systems that feature linked kinematic chains. The planning
results demonstrate that the invariant is useful for evaluating
the reachability of goal positions. It also provides relabelings
of the goal position that might result in a path, if any exist.
This can be used in conjunction with a simple probabilistic
planner to greatly improve planning performance.

Although the link-augmented graph is a much stronger tool
than the graph structure alone, it still has some limitations.
This invariant cannot distinguish between more complicated
classes of knots and links that tend to appear as the number of
modules increases. However, the framework used to construct
the link-augmented graph by combining linking information
with graph structure can easily be extended to incorporate
more powerful knot-theoretic information. Future work will
explore more sophisticated methods of detecting the knots and
links embedded in the robot kinematic structure to create even
stronger invariants.

REFERENCES

[1] J. Seo, J. Paik, and M. Yim, “Modular reconfigurable robotics,” Annual
Review of Control, Robotics, and Autonomous Systems, vol. 2, pp. 63–
88, 2019.

[2] V. A. Reinholtz and L. T. Watson, “Enumeration and analysis of variable
geometry truss manipulators,” 1990.

[3] Y. Patel, P. George et al., “Parallel manipulators applications—a survey,”
Modern Mechanical Engineering, vol. 2, no. 03, p. 57, 2012.

[4] K. Miura, H. Furuya, and K. Suzuki, “Variable geometry truss and its
application to deployable truss and space crane arm,” Acta Astronautica,
vol. 12, no. 7-8, pp. 599–607, 1985.

[5] M. D. Rhodes and M. Mikulas Jr, “Deployable controllable geometry
truss beam,” NASA Langley Research Center, Tech. Rep. TM-86366,
1985.

[6] N. S. Usevitch, Z. M. Hammond, M. Schwager, A. M. Okamura,
E. W. Hawkes, and S. Follmer, “An untethered isoperimetric soft robot,”
Science Robotics, vol. 5, no. 40, 2020.

[7] D. S. Shah, J. W. Booth, R. L. Baines, K. Wang, M. Vespignani,
K. Bekris, and R. Kramer-Bottiglio, “Tensegrity robotics,” Soft robotics,
2021.

[8] G. J. Hamlin and A. C. Sanderson, Tetrobot: A modular approach to
reconfigurable parallel robotics. Springer Science & Business Media,
2013, vol. 423.

[9] C.-H. Yu, K. Haller, D. Ingber, and R. Nagpal, “Morpho: A self-
deformable modular robot inspired by cellular structure,” in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 2008, pp. 3571–3578.

[10] Z. M. Hammond, N. S. Usevitch, E. W. Hawkes, and S. Follmer, “Pneu-
matic reel actuator: Design, modeling, and implementation,” in 2017
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2017, pp. 626–633.

[11] A. Spinos and M. Yim, “Towards a variable topology truss for shoring,”
in Ubiquitous Robots and Ambient Intelligence (URAI), 2017 14th
International Conference on. IEEE, 2017.

[12] A. Spinos, D. Carroll, T. Kientz, and M. Yim, “Topological reconfigu-
ration planning for a variable topology truss,” Journal of Mechanisms
and Robotics, vol. 13, no. 4, p. 040901, 2021.

[13] C. Liu, S. Yu, and M. Yim, “Motion planning for variable topology truss
modular robot,” in Proceedings of Robotics: Science and Systems, July
2020.

[14] S. Kloder and S. Hutchinson, “Path planning for permutation-invariant
multirobot formations,” IEEE Transactions on Robotics, vol. 22, no. 4,
pp. 650–665, 2006.

[15] M. Park, S. Chitta, A. Teichman, and M. Yim, “Automatic configuration
recognition methods in modular robots,” The International Journal of
Robotics Research, vol. 27, no. 3-4, pp. 403–421, 2008.

[16] C. C. Adams, The knot book. American Mathematical Soc., 1994.
[17] L. H. Kauffman, “Invariants of graphs in three-space,” Transactions of

the American Mathematical Society, vol. 311, no. 2, pp. 697–710, 1989.
[18] S. Yamada, “An invariant of spatial graphs,” Journal of Graph Theory,

vol. 13, no. 5, pp. 537–551, 1989.
[19] M. Yim, D. G. Duff, and K. D. Roufas, “Polybot: a modular reconfig-

urable robot,” in Robotics and Automation (ICRA), IEEE International
Conference on, vol. 1. IEEE, 2000, pp. 514–520.

[20] A. Qu and D. L. James, “Fast linking numbers for topology verification
of loopy structures,” ACM Trans. Graph., vol. 40, no. 4, pp. 106:1–
106:19, aug 2021.

[21] Z. Arai, “A rigorous numerical algorithm for computing the linking
number of links,” Nonlinear Theory and Its Applications, IEICE, vol. 4,
no. 1, pp. 104–110, 2013.

[22] B. D. McKay and A. Piperno, “Practical graph isomorphism, II,” Journal
of Symbolic Computation, vol. 60, pp. 94 – 112, 2014.

[23] J. J. Kuffner and S. M. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” in Proceedings 2000 ICRA. Millennium
Conference. IEEE International Conference on Robotics and Automa-
tion. Symposia Proceedings (Cat. No. 00CH37065), vol. 2. IEEE, 2000,
pp. 995–1001.

[24] J. H. Conway and C. McA. Gordon, “Knots and links in spatial graphs,”
Journal of Graph Theory, vol. 7, no. 4, pp. 445–453, 1983.


