
Parallel Self-Assembly with SMORES-EP, a Modular Robot

Chao Liu1, Qian Lin2, Hyun Kim1, and Mark Yim1

Abstract— Self-assembly of modular robotic systems enables
the construction of complex robotic configurations to adapt to
different tasks. This paper presents a framework for SMORES
types of modular robots to efficiently self-reconfigure into
tree topologies. These modular robots form kinematic chains
that have been shown to be capable of a large variety of
manipulation and locomotion tasks, yet they can reconfigure
using a mobile reconfiguration. A desired kinematic topology
can be mapped onto a planar pattern with optimal module
assignment based on the modules’ location, then the mobile
reconfiguration assembly process can be executed in parallel.
The framework is demonstrated on the SMORES-EP platform.

I. INTRODUCTION

It is common in nature that groups of individuals can
form a variety of structures in order to overcome the
limited capability of each individual, especially for insects
who often need to collaborate in large groups to finish
tasks. This collective intelligence has inspired researchers
in robotics to develop similar robotic systems. Modular
robots are composed of numerous simple building blocks,
or modules, which can be formed into various morphologies.
While each individual usually has limited capability, multiple
modules are able to execute complicated tasks by assembling
into suitable configurations. Separated modules that have
independent mobility can autonomously come together to
form arbitrary configurations. Determining the sequence of
motions to form a goal configuration of modules is called
self-assembly planning.

Self-assembly is related to self-reconfiguration for mod-
ular robots. There are in general three styles of self-
reconfiguration among the variety of self-reconfigurable
robot architectures: lattice, chain and mobile style [1]. Lat-
tice style reconfiguration occurs with modules rearranging
themselves to positions on a virtual lattice while maintaining
a single connected component. Chain style occurs between
modules forming kinematic chains again in a single con-
nected component. The mobile style occurs where modules
can separate from each other and move on the environment.
Thus self-assembly is mostly related to the latter style.

The self-assembly ability is able to change the interaction
between the robot and the environment dramatically. For
example, a SMORES [2] module has four active rotational
degrees-of-freedom (DOF), pan, tilt and left/right wheels. It

1Chao Liu, Hyun Kim and Mark Yim with GRASP Lab and the
Department of Mechanical Engineering and Applied Mechanics, University
of Pennsylvania, Philadelphia, PA 19104, USA {chaoliu, hkim8,
yim}@seas.upenn.edu

2Qian Lin with the Department of Mechanical Engineering, Tsinghua
University, Beijing, China lqa16@mails.tsinghua.edu.cn

has differential wheeled drive using its left and right wheels.
An example collaborative behaviour using this mobility is
obstacle crossing. Whereas a single module cannot cross a
gap that is larger than the width of one module, multiple
modules can form a snake configuration to overcome this
difficulty. Other applications include reaching tall spaces or
rapid simultaneous exploration. These behaviors are similar
to the swarming behaviors of bees and ants.

Modular robots are capable of assembling themselves into
different kinematic structures with locomotion and manip-
ulation capabilities, such as a walker with four legs and
a mobile vehicle mounted with a manipulator. There are
several challenges needed to be addressed:

1) Efficiency is important, especially for modular robotic
systems which are supposed to have a large number of
modules involved;

2) Many physical constraints have to be considered for
real hardware applications;

3) Accurate docking is required which is usually a hard
problem for modular robots.

The hardware platform SMORES (Self-assembly
MOdular Robot for Extreme Shape-shifting) is first
presented in [2] and SMORES-EP is the current version
where EP refers to the Electro-Permanent magnets as its
connector [3]. Each module is a four degree-of-freedom
(LEFT DOF, RIGHT DOF, PAN DOF and TILT DOF)
system with four connectors (LEFT Face or L, RIGHT Face
or R, TOP Face or T and BOTTOM Face or B) which are
equipped with an array of electro-permanent magnets as
illustrated in Fig. 1. In particular, LEFT DOF, RIGHT DOF
and PAN DOF can continuously rotate to produce a twist
motion of docking ports relative to the module body, and
TILT DOF is limited to ±90° to produce a bending joint.
LEFT DOF and RIGHT DOF can also be used as driving
wheels when doing differential drive locomotion.

Fig. 1. A SMORES-EP module with four active rotation degrees-of-
freedom and four connectors using an array of electro-permanent (EP)
magnets.

This accepted article to ICRA 2020 is made available by the authors in compliance with IEEE policy.

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

The SMORES-EP modules are unique among self-
reconfigurable systems in that they can reconfigure in any
of the three styles noted earlier. The system can also form
chains which has been shown to be one of the more useful
configurations for doing things like manipulation of objects
or different styles of locomotion. While lattice style recon-
figuration mechanisms have been studied in depth [4], the
mobile form of reconfiguration similar to self-assembly has
not been.

In this paper, a parallel self-assembly algorithm for kine-
matic topology as well as controllers for hardware execution
are presented using SMORES-EP modules. A target kine-
matic structure can be simply defined as a graph where
each vertex is a module and each edge is the connection
between adjacent modules. Given the current locations of all
modules, every individual is mapped to a module in the target
configuration in an optimal way by solving a task assignment
problem. Then the assembly actions can be executed in
a parallel manner satisfying some physical constraints. A
motion controller is also developed to guarantee the success
of docking process. The effectiveness and robustness of the
framework is demonstrated by the physical hardware.

The paper is organized as follows. Sec. II reviews relevant
and previous work. Sec. III introduces the modular robot
configuration and how to determine the goal location of each
module in an optimal way. The parallel assembly algorithm
is presented in Sec. IV and some hardware experiments are
shown in Sec. V. Finally, Sec. VI talks about the conclusion
and future work.

II. RELATED WORK

Self-assembly problems have been studied for different
modular robotic systems. Swarm-bot [5] modules are small
mobile platforms and each module has an arm that can
be used to link them together. The assembly is limited
to simple 2-dimensional structures for planar applications
and have been shown with dozens of modules cooperating
together. Larger scale planar systems with nearly on thousand
modules have been shown with kilobots [6]. Modular boats
have formed shapes in water [7] and modular quadrotors
have assembled planar shapes in midair [8]. These systems
are not applicable to complex locomotion and manipula-
tion tasks. Some self-assembly algorithms are presented
in [9], [10], [11], [12], [13] and [14] but limited to mod-
ules which do not have non-holomic constraints or planar
structures. An approach to solve configuration formation is
presented in [15] but in sequential manner which makes
the formation process slow. Assembling structures in 3-
dimensional space is shown in [16] and [17] but do not deal
with the physical constraints of land-mobile platforms. All
chain-type modular robot reconfiguration algorithms implic-
itly solve kinematic models. For example, reconfiguration
for Polybot in kinematic topology was presented in [18] but
without demonstration on physical systems. Also for chain-
type modular robots, modules remain connected during the
motion process, thus these systems cannot do self-assembly.
Similarly, for lattice-type modular robots, reconfiguration

usually happens in 3-dimensional space and some useful
techniques have been introduced [19], but these techniques
are not applicable to the self-assembly of mobile class
of modular robot problem since initially modules are not
in one connected component. A distributed reconfiguration
algorithm for SMORES-EP is introduced in [20] which
focuses on topology reconfiguration by manipulating a part
of modules in the initial configuration and it has a different
goal that is to minimize the number of reconfiguration
actions.

Our work differs from the structural self-assembly work
in that our assembly goal is to build a kinematic topology,
such as a multi-limbed form or a snake, which has similar
locomotion and manipulation ability with other type of robots
to interact with environments. Secondly, the modules are
not limited to holonomic vehicles with passive connectors.
In addition, the hardware in this work, SMORES-EP, has
more connectors resulting in more possible configurations
since there are more ways to connect two modules, which
also complicates the self-assembly process and hardware
control. With the locomotion ability of each module, the self-
assembly problem can be solved in a parallel manner while
taking hardware constraints into consideration. Finally, the
motion planner is validated on physical systems with multi-
ple experiments to show its effectiveness and robustness.

III. ROBOT CONFIGURATION AND ASSEMBLY
A. Modular Robot Topology Configuration

A graph model of modular robot topology was presented
in [21]. A modular robot topology can be represented as
a graph G = (V,E) where V is the set of vertices of G
representing all modules and E is the set of edges of G rep-
resenting all the connections among modules. Graphs with
only one path between each pair of vertices are trees. It is
convenient to start with tree topology and, if a configuration
has loops, it can be converted into an acyclic configuration
by running a spanning tree algorithm. Therefore, this work
only focuses on configurations in tree topology.

A tree G = (V,E) can be rooted with respect to a vertex
τ ∈ V . Given a modular robot configuration in tree topology,
the root is selected as the center of the graph defined in [22].
A linear-time algorithm to compute the root of a modular
robot configuration is shown in [21]. Then the degree of a
vertex (module) v in G = (V,E) denoted as d(v) can be
defined that is the number of edges from v to the root τ .
There are multiple ways to connect module u and module v
denoted as connect(u, v) from module u’s point of view
and connect(v, u) from module v’s point of view. Each
connection has three attributes: Face, Face2Con and Orienta-
tion [21]. Some seemingly different connections are actually
equivalent in topology. In a SMORES-EP configuration, at-
tribute Orientation is trivial for the connections among LEFT
Face, RIGHT Face and TOP Face. For connections between
two BOTTOM Faces which cannot rotate, Orientation needs
to be considered (Orientation∈ [0, 1]) shown in Fig. 2.

With all these information, a SMORES-EP configuration
can be fully defined. For example, a three-module config-

(a) (b)

Fig. 2. Connection between two BOTTOM Faces: (a) Orientation is 0 and
(b) Orientation is 1.

1 2

3

(a)

1

2

3

T
T

L
R

(b)

Fig. 3. (a) A three-module configuration and (b) its graph.

uration is shown in Fig. 3a and its graph representation is
shown in Fig. 3b. In addition, the root module is Module 2.

B. Self-Assembly Problem

Assume there is a team of modules M =
{m1,m2, · · · ,mn} in the Eculidean space R2. The
state of a module mi ∈ M is defined as pi = [xi, yi, θi]

ᵀ

where oi = [xi, yi]
ᵀ is the location of the center of mi

and θi is the orientation of mi. Then the distance between
module mi and mj can be derived as ‖oi − oj‖. Every
SMORES-EP module is a cube with a side length of w. The
assembly goal is a SMORES-EP tree topology Configuration
G = (V,E) where |V | = n. Not all kinematic topology
can be built by self-assembly process. Only the kinematic
topology that can be unfolded onto a plane can be achieved
by a bunch of separated modules on the ground.

Definition 1: The target kinematic topology that can be
self-assembled by separated modules is a modular robot
configuration G = (V,E) that can be fully unfolded to a
plane satisfying:

1) G is a connected graph;
2) The distance between two adjacent modules is w;
3) The center of every module occupies a unique location.
The modules are located at arbitrary locations with con-

straint that the distance between any pair of modules mi

and mj denoted as dij is greater than w. The kinematic
topology self-assembly problem is stated. Given a target
kinematic topology G = (V,E) and a team of n modules
M = {m1,m2, · · · ,mn} where n = |V |, find a sequence of
collision-free assembly actions to form the target kinematic
topology.

IV. PARALLEL SELF-ASSEMBLY ALGORITHM

We propose a parallel self-assembly algorithm for a set of
modules to form a desired kinematic topology.

A. Task Assignment

Given a target kinematic topology G = (V,E), first check
if it can be derived by self-assembly and, if yes, fully unfold

(a) (b) (c) (d) (e)

Fig. 4. (a) mi TOP Face is connected with mj TOP Face and (b) its
kinematic diagram. (c) (d) (e) are the kinematic diagrams of three other
cases when mi TOP Face is involved in the connection.

it to the ground. The root module τ of G can be computed
in linear time [21]. Then the state of each module vi ∈ V
with respect to this root module τ denoted as p̄i after fully
unfolding G can be computed in breadth-first search order
starting from τ . For example, module mi is the parent of
module mj , and TOP Face of mj is attached to TOP Face
of mi shown in Fig. 4a as well as its kinematic diagram
shown in Fig. 4b. There are three more cases with TOP Face
of mi involved shown in Fig. 4c — Fig. 4e. In breadth-first
search order, when visiting mj , p̄i =

[
x̄i, ȳi, θ̄i

]
is already

known. The state of mj with respect to mi denoted as p̄ji is
determined by the involved connectors, e.g. p̄ji = [w, 0, π]

ᵀ

for Fig. 4b. Then

p̄j =

[
R 0
0 1

]
p̄ji + p̄i (1)

in which R =

[
cos θ̄i − sin θ̄i
sin θ̄i cos θ̄i

]
.

Given a set of n modulesM, each module m ∈M needs
to be mapped to a module v ∈ V in an optimal way that
is called the task assignment problem. We want to minimize
the total distance that all modules have to travel in order
to assemble G. First, the center location of all modules can
be defined as oc = [xc, yc]

ᵀ where xc =
∑n
i=1 xi/n and

yc =
∑n
i=1 yi/n. Then the root module is selected as

mτ = arg min
mi∈M

‖oi − oc‖ (2)

The state of every module mi ∈ M with respect to
mτ denoted as p̃i can be computed simply by rigid body
transformation. Obviously p̃τ = [0, 0, 0]

ᵀ. Recall that ōi is
the location of the center of vi with respect to τ ∈ V .
Given mτ is mapped to τ , namely ‖õτ − ōτ‖ = 0, the
distance between every pair of mi ∈ M \ {mτ} and
vj ∈ V \ {τ} is simply ‖õi − ōj‖ which is the cost
of task — moving to location of vj — for module mi.
Some other factors can also be included in the cost rather
than just the distance, such as the orientation. The optimal
task assignment problem can be solved by Kuhn-Munkres
algorithm or other concurrent assignment and planning of
trajectories algorithms in polynomial time [23]. The output
is a one-to-one and onto mapping f : V →M which is used
by a motion planner later to generate the assembly sequence.

B. Parallel Assembly Actions
With mapping f : V → M, the assembly sequence is

computed from root to leaves of G. In each step, all the

Algorithm 1: Parallel Assembly
Input: Target Kinematic Topology G = (V,E) with

root τ and depth d(G), f : V →M
Output: Parallel Assembly Sequence A

1 d← 1;
2 while d ≤ d(G) do
3 Create empty action queue A;
4 V ← {v ∈ V |d(v) = d};
5 for v ∈ V do
6 m← f(v);
7 mc ← f(vc);
8 A.enqueue((m, c,mc, c′));

9 A.enqueue(A);
10 d← d+ 1;

modules inM mapped to the modules in the target kinematic
topology G with the same depth can be executed in parallel
manner. d(G) and d(v) are the depth of rooted graph G and
vertex v ∈ V respectively, then for any vertex with d(v) > 0,
we denote its parent connected via its connector c as vc

and the mating connector of vc as c′. An assembly action
is simply a tuple in the form of (mi, ci,mj , cj) meaning
connect mi’s connector ci with mj’s connector cj . The
parallel assembly algorithm is shown in Algorithm 1.

For each group of assembly actions A ∈ A, all the actions
can be executed in parallel except when multiple modules are
docking with different connectors of the root module. The
group of assembly actions A with the root module involved is
separated into two subgroups: one group contains the actions
for LEFT Face and RIGHT Face of the root module which
is executed first and the other group contains the actions for
TOP Face and BOTTOM Face of the root module which is
executed later. This is because the root module is not fixed to
the ground and it is hard to ensure all attached modules can
approach the root module simultaneously. For each assembly
action a = (mi, ci,mj , cj) ∈ A, a motion controller is
running to first navigate mi to a location close to mj and the
distance is determined by the grid size of the environment,
then adjust the pose of mj to align the connector ci with cj ,
and finally approach cj to finish docking process.

C. Docking Control

Docking is a difficult process when doing self-assembly.
We separate the docking process into three steps to ensure
its success: navigation, pose adjustment and approach.

1) Navigation: When doing self-assembly, each
SMORES-EP module m ∈ M can behave as a differential-
drive vehicle with the following kinematics model:

˙̃p =




˙̃x
˙̃y
˙̃
θ


 =




cos θ̃ 0

sin θ̃ 0
0 1



[
v
ω

]
(3)

in which v is the linear velocity along x-axis of body frame
mi and ω is the angular velocity around z-axis of body

frame mi which are determined by the velocity of LEFT
DOF and RIGHT DOF. Given a set of assembly actions
A, the collision-free paths to navigate all involved modules
can be generated by some multi-vehicle planner, e.g. [24].
Then, ∀a = (mi, ci,mj , cj) ∈ A, a simple path following
controller is running to control mi to a location close to mj .

2) Pose Adjustment: Once the navigation procedure is
done, mi starts to adjust its pose to align the involved
connector. If ci is either LEFT Face or RIGHT Face, then
adjust x′i and θ′i to zeros where x′i is the x location of mi

with respect to body frame of f−1(mi) (the goal pose of
mi) and similar to θ′i. Otherwise, adjust y′i and θ′i to zeros.
A kinematics model for the second case can be derived as

[
ẏ′i
θ̇′i

]
=

[
sin θ′i 0

0 1

] [
v
ω

]
(4)

A control law to make y′i and θ′i to converge to zeros is
[
v
ω

]
=

[
sin θ′i 0

0 1

]−1
K2×2

[
−y′i
−θ′i

]
(5)

where K is positive definite and K = diag(2, 1) in our
experiments. Similar controller can be derived for the first
case.

3) Approach: The last step is to approach cj by moving
in a straight line which is similar to the controller used in
navigation step to follow a given trajectory. If ci is either
TOP Face or BOTTOM Face, then module mi will first
adjust ci to the right position and then keep moving and
pushing mj until ci and cj are fully connected. Otherwise, a
helping module shown in Fig. 5 is needed. A new assembly
action (mH ,T,mi, c̄i) where mH is a helping module and
c̄i is LEFT Face if ci is RIGHT Face, or the reverse. After
mH is connected with mi, mi will be lifted up so that it
can adjust ci to the right position, and then lifted down. At
last, mH will keep moving to push mi to approach mj for
docking. In our setup, there is only one helping module. It is
possible to have more to execute assembly actions requiring
helping modules in parallel.

V. EXPERIMENTS

Our algorithm was demonstrated with SMORES-EP mod-
ules on three tasks. We use a VICON motion capture system
to localize the pose of every module and all paths for
modules are generated on an empty grid map.

A. Task 1: Mobile Manipulator

The first task is to form a mobile vehicle with an arm
that can reach higher locations as is shown in Fig. 6g. There
are seven modules involved and the initial locations of all

Fig. 5. Helping Module with Some Payload

TABLE I
INITIAL LOCATIONS OF ALL MODULES IN TASK 1

Module x (m) y (m) θ (rad)
Module 0 0.017 0.357 1.142
Module 1 0.0 0.0 0.0
Module 2 0.305 0.129 0.641
Module 3 -0.318 -0.132 0.454
Module 4 -0.318 0.158 0.823
Module 5 0.264 -0.448 -0.763
Module 6 -0.172 -0.380 -2.431

0

1 2

5

6

3

4

(a) (b) (c) (d)

(e) (f)

0
3

4

5

6

1 2

(g)

Fig. 6. SMORES-EP hardware mobile manipulator self-assembly:
(a) Execute actions (0,B, 1,L) and (5,B, 1,R); (b) Execute actions
(2,B, 1,T) and (6,T, 1,B); (c) Execute action (4,T, 6,B); (d) Execute
action (3,T, 4,B). (e) — (f) are the final assembly. (g) is the target
kinematic topology.

modules are shown in Table I. Without self-assembly, this
task is not feasible. Module 1 is the root module which
is closest to the center of all module locations. Then the
mapping f : V → M is 0 → 1, 1 → 5, 2 → 2, 3 → 0,
4 → 6, 5 → 4 and 6 → 3 by Kuhn-Munkres algorithm.
The assembly sequence starts from all vertices v ∈ V with
depth of 1 in the target topology G = (V,E). Module 0
and Module 5 start moving first to dock with LEFT Face
and RIGHT Face of Module 1 respectively (Fig. 6a), then
Module 2 and Module 6 begin the docking process with TOP
Face and BOTTOM Face of the root module (Fig. 6b). At
last, Module 4 and Module 3 execute the assembly actions
successively (Fig. 6c and Fig. 6d). The path of each module
in this experiment was recorded shown in Fig. 7. The final
assembled configuration is shown in Fig. 6f.

In the docking process, controller for pose adjustment and
approach ensures the success of docking. For example, for
the last assembly action (3,T, 4,B), Module 3 first adjusts
its body frame (Fig. 8a) so that its TOP Face is aligned with
BOTTOM Face of Module 4 (Fig. 8b) shown in Fig. 9a.
Then Module 3 moves forward to Module 4 for final docking
(Fig. 8c) shown in Fig. 9b.

B. Task 2: Holonomic Vehicle

The second task is to assemble nine modules into a
holonomic vehicle in order to do transportation activities

0

2

3

1

4

5

66

(m)

(m
)

Fig. 7. Actual path of each module for Task 1.

TABLE II
INITIAL LOCATIONS OF ALL MODULES IN TASK 2

Module x(m) y(m) θ(rad)
Module 0 -0.421 0.388 -0.760
Module 1 0.0 0.0 0.0
Module 2 -0.110 -0.469 1.445
Module 3 0.386 -0.143 0.509
Module 4 -0.343 0.082 -2.961
Module 5 0.118 -0.472 1.700
Module 6 0.215 0.428 -2.058
Module 7 -0.342 -0.044 -1.249
Module 8 0.270 -0.317 2.416

shown in Fig. 10f. The initial location of all modules are
shown in Table II and the root module is then selected as
Module 1. The mapping f : V → M is 0 → 1, 1 → 0,
2 → 8, 3 → 5, 4 → 4, 5 → 6, 6 → 3, 7 → 2 and 8 → 7.
The assembly process is shown in Fig. 10a — Fig. 10c and
the final assembly is shown in Fig. 10d and Fig. 10e. With
our planner and controllers, the recorded actual path of every
module in the experiment is illustrated in Fig. 11.

C. Task 3: RC Car

The last task is to assemble seven modules as a vehicle
in order to push heavy items shown in Fig. 12f. The initial
location of all modules are shown in Table III and the root
module is selected as Module 2. The mapping f : V →M
is 0→ 2, 1→ 1, 2→ 3, 3→ 5, 4→ 7, 5→ 6 and 6→ 4.
The assembly actions are shown in Fig. 12a — Fig. 12c.
For the first step, we need to dock Module 1 RIGHT Face
with Module 2 LEFT Face and dock Module 3 LEFT Face
with Module 2 RIGHT Face. These two assembly actions

3

4

(a)

3

4

(b)

3

4

(c)

Fig. 8. Adjustment of position and orientation before execute assembly
action (3,T, 4,B). (a) Module 3 finished navigation process and started to
adjust its pose. (b) y′3 and θ′3 have been adjusted and it started to approach
the goal for docking. (c) The docking process of Module 3 completed.

113 114 115 116 117 118 119 120

Time (s)

−0.03

−0.02

−0.01

0.00

0.01

0.02

0.03

y
′ 3

(m
)

y′3
desired y′3

−3

−2

−1

0

1

2

3

θ′ 3
(r

ad
)

θ′3
desired θ′3

(a)

120 121 122 123 124 125 126

Time (s)

−0.30

−0.29

−0.28

−0.27

−0.26

−0.25

−0.24

x
′ 3
/m

x′3
desired x′3

−3

−2

−1

0

1

2

3

θ′ 3
(r

ad
)

θ′3
desired θ′3

(b)

Fig. 9. Pose adjustment of Module 3 before docking in Task 1: (a)
Adjusting of y′3 and θ′3 and (b) adjusting x′3 while maintaining the correct
orientation.

60

4

7
1

5

8

2

3

(a) (b) (c) (d)

(e)

3
7

8

4

015

26

(f)

Fig. 10. SMORES-EP hardware holonomic vehicle self-assembly: (a)
Execute assembly actions (0,T, 1,L) and (5,T, 1,R); (b) Execute as-
sembly actions (4,T, 1,B) and (8,T, 1,T); (c) Execute assembly actions
(3,T, 8,B), (2,T, 5,B), (7,T, 4,B) and (6,T, 0,B). (d) — (e) are the
final assembly. (f) is the target kinematic topology.

require the help of a helping module shown in Fig. 12b. The
final assembly result is shown in Fig. 12d and Fig. 12e. The
recorded path in the experiment is shown in Fig. 13.

VI. CONCLUSIONS

In this paper, we present a parallel modular robot self-
assembly algorithm for kinematic topology which can sig-
nificantly improve the capability of modular robots to interact
with the environment. Modules are mapped to those in

1

0

2

3

4

5

6

7

8

(m)

(m
)

Fig. 11. Actual path of each module for Task 2.

TABLE III
INITIAL LOCATIONS OF ALL MODULES IN TASK 3

Module x(m) y(m) θ(rad)
Module 1 0.070 0.155 -1.352
Module 2 0.0 0.0 0.0
Module 3 -0.066 -0.250 0.997
Module 4 -0.299 0.170 0.811
Module 5 0.311 0.197 -2.539
Module 6 0.330 -0.373 -2.728
Module 7 -0.487 0.218 -0.436

2

1

3

7

4

5

6

(a) (b) (c)

(d) (e)

4

13

60
25

(f)

Fig. 12. SMORES-EP hardware RC car self-assembly: (a) Execute actions
(1,R, 2,L) and (3,L, 2,R); (b) Helping module is used to execute the last
docking actions; (c) Execute actions (4,T, 3,B), (7,T, 1,B), (6,B, 3,T)
and (5,B, 1,T). (d) — (e) are the final assembly. (f) is the target kinematic
topology.

1

3

6

7
5

(m)

(m
)

4

2

Fig. 13. Actual path of each module in Task 3. The blue blocks without
number labeled represent the helping modules.

the target configuration in an optimal way and then the
assembly actions can be computed and executed in parallel.
Motion controllers are developed to ensure the success of
docking among modules. Hardware demonstrations show the
effectiveness and robustness of the algorithm.

Future work includes creating demonstrations of arbitrary
3D structures with the SMORES-EP system. This is a
capability which, in principle, should be possible with small
changes to the algorithm, but is much harder to demonstrate
using hardware with the concomitant complications of con-
straints from actuator limitations for lifting modules. Simu-
lations with much larger structures would also demonstrate
the scalability of this algorithm.

REFERENCES

[1] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. Chirikjian, “Modular self-reconfigurable robot systems: Grand
challenges of robotics,” IEEE Robotics & Automation Magazine,
vol. 14, no. 1, pp. 43–52, 2007.

[2] J. Davey, N. Kwok, and M. Yim, “Emulating self-reconfigurable robots
— design of the smores system,” in 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct 2012, pp. 4464–
4469.

[3] T. Tosun, J. Davey, C. Liu, and M. Yim, “Design and characterization
of the ep-face connector,” in 2016 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct 2016, pp. 45–51.

[4] K. Stoy, “How to construct dense objects with self-recondfigurable
robots,” in European Robotics Symposium 2006, H. I. Christensen, Ed.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 27–37.

[5] R. Groß, M. Bonani, F. Mondada, and M. Dorigo, “Autonomous
self-assembly in a swarm-bot,” in Proc. of the 3rd Int. Symp. on
Autonomous Minirobots for Research and Edutainment (AMiRE 2005),
K. Murase, K. Sekiyama, N. Kubota, T. Naniwa, and J. Sitte, Eds.
Springer, Berlin, Germany, 2006, pp. 314–322.

[6] M. Rubenstein, A. Cornejo, and R. Nagpal, “Programmable self-
assembly in a thousand-robot swarm,” Science, vol. 345, no. 6198,
pp. 795–799, 2014.

[7] I. O’Hara, J. Paulos, J. Davey, N. Eckenstein, N. Doshi, T. Tosun,
J. Greco, J. Seo, M. Turpin, V. Kumar, and M. Yim, “Self-assembly
of a swarm of autonomous boats into floating structures,” in 2014
IEEE International Conference on Robotics and Automation (ICRA),
May 2014, pp. 1234–1240.

[8] D. Saldaña, B. Gabrich, G. Li, M. Yim, and V. Kumar, “Modquad:
The flying modular structure that self-assembles in midair,” in 2018
IEEE International Conference on Robotics and Automation (ICRA),
May 2018, pp. 691–698.

[9] E. Klavins, R. Ghrist, and D. Lipsky, “A grammatical approach to self-
organizing robotic systems,” IEEE Transactions on Automatic Control,
vol. 51, no. 6, pp. 949–962, June 2006.

[10] J. Werfel, D. Ingber, and R. Nagpal, “Collective construction of
environmentally-adaptive structures,” in 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Oct 2007, pp. 2345–
2352.

[11] L. Murray, J. Timmis, and A. Tyrrell, “Modular self-assembling and
self-reconfiguring e-pucks,” Swarm Intelligence, vol. 7, no. 2, pp. 83–
113, Sep 2013.

[12] J. Seo, M. Yim, and V. Kumar, “Assembly sequence planning for
constructing planar structures with rectangular modules,” in 2016 IEEE
International Conference on Robotics and Automation (ICRA), May
2016, pp. 5477–5482.

[13] H. Li, T. Wang, and G. S. Chirikjian, “Self-assembly planning of
a shape by regular modular robots,” in Advances in Reconfigurable
Mechanisms and Robots II, X. Ding, X. Kong, and J. S. Dai, Eds.
Cham: Springer International Publishing, 2016, pp. 867–877.

[14] D. Saldaña, B. Gabrich, M. Whitzer, A. Prorok, M. F. M. Campos,
M. Yim, and V. Kumar, “A decentralized algorithm for assembling
structures with modular robots,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp.
2736–2743.

[15] A. Dutta, P. Dasgupta, and C. Nelson, “Distributed configuration
formation with modular robots using (sub)graph isomorphism-based
approach,” Autonomous Robots, vol. 43, pp. 837–857, April 2019.

[16] J. Werfel and R. Nagpal, “Three-dimensional construction with mobile
robots and modular blocks,” The International Journal of Robotics
Research, vol. 27, no. 3-4, pp. 463–479, 2008.

[17] M. T. Tolley and H. Lipson, “On-line assembly planning for stochas-
tically reconfigurable systems,” The International Journal of Robotics
Research, vol. 30, no. 13, pp. 1566–1584, 2011.

[18] A. C. Mark H. Yim, David Goldberg, “Connectivity planning for
closed-chain reconfiguration,” in SPIE 4196, Sensor Fusion and De-
centralized Control in Robotic Systems III, vol. 4196, Oct 2000.

[19] D. Brandt, “Comparison of a and rrt-connect motion planning tech-
niques for self-reconfiguration planning,” in 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Oct 2006, pp.
892–897.

[20] C. Liu, M. Whitzer, and M. Yim, “A distributed reconfiguration plan-
ning algorithm for modular robots,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 4231–4238, Oct 2019.

[21] C. Liu and M. Yim, “Configuration recognition with distributed
information for modular robots,” in IFRR International Symposium
on Robotics Research, 2017.

[22] G. McColm, “On the structure of random unlabelled acyclic graphs,”
Discrete Mathematics, vol. 277, no. 1, pp. 147–170, 2004.

[23] M. Turpin, N. Michael, and V. Kumar, “Concurrent assignment and
planning of trajectories for large teams of interchangeable robots,”
in 2013 IEEE International Conference on Robotics and Automation,
May 2013, pp. 842–848.

[24] B. Binder. tuw multi robot. TU Wien. [Online]. Available: http:
//wiki.ros.org/tuw multi robot

