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Pauses Provide Effective Control for an
Underactuated Oscillating Swimming Robot

Gedaliah Knizhnik, Philip deZonia, and Mark Yim

Abstract—We describe motion primitives and closed-loop con-
trol for a unique low-cost single-motor oscillating aquatic system:
the Modboat. The Modboat is driven by the conservation of
angular momentum, which is used to actuate two passive flippers
in a sequential paddling motion for propulsion and steering.
We propose a discrete description of the motion of the system,
which oscillates around desired trajectories, and propose two
motion primitives — one frequency based and one pause-based
— with associated closed-loop controllers. Testing is performed to
evaluate each motion primitive, the merits of each are presented,
and the pause-based primitive is shown to be significantly
superior. Finally, waypoint following is implemented using both
primitives and shown to be significantly more successful using
the pause-based motion primitive.

Index Terms—Marine Robotics, Underactuated Robots

I. INTRODUCTION

AFFORDABLE and capable propulsion has been a lim-
iting factor in the development of modular autonomous

surface and underwater vehicles (ASVs and AUVs). Signif-
icant work has gone into developing kayak, catamaran, or
trimaran robots for ASVs [1], which are capable of powerful
locomotion, but self-assembling modular systems have not
been explored. The TEMP project [2] [3] developed modular
ASVs capable of docking together and forming larger floating
structures, but their modules were holonomic and required
six actuators (two docking motors and four drive motors) to
achieve this behavior. Similarly, work on modular AUVs has
generally considered holonomic motion as a requirement, such
as AMOUR V [4] or µAUV2 [5]. Actuators dominate the
cost of a system, so a low-cost propulsion mechanism would
enable development of larger systems and swarms of modular
reconfigurable floating systems.

Reducing the number of actuators to one reduces cost but
introduces control complexity. For self-assembling modular
boats, docking together is what makes them unique. In order
to enable docking, the precision placement of boats relative to
each other is very important; thus precise trajectory following
and position control must be solved to prove viability. Control
is trivial for many aquatic systems but is complicated by the
reduced actuation of low-cost systems.

A unique mechanism for providing motion with reduced ac-
tuation is internal rotor propulsion. Initially used for terrestrial
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Fig. 1. The Modboat prototype, nicknamed Flippy. The bottom body is
obscured beneath the top body [14].

locomotion, it was applied to the Chaplygin sleigh problem by
Osborne and Zenkov, who considered using the movement of a
fully actuated mass to steer the nonholonomic sleigh [6]. Kelly
et al. introduced the Chaplygin Beanie, in which the mass is
reduced to rotation only, and showed that it could be driven
using proportional heading control [7], while Tallapragada
and Fedonyuk showed that periodic impulses could also be
used [8]. The same principle has also been used for climbing
between two walls by Degani [9] [10].

Internal rotor propulsion has shown promise in aquatic
locomotion as well. Kelly et al. applied the principles of the
Chaplygin Beanie to an aquatic robot [7], while Tallapragada
showed that the core propulsion mechanism is vortex shedding
from the tail, driven by the internal rotor [11]. Refael and
Degani introduced a unique design following this approach
in which a rotating driving mass actuates a pair of passive
flippers that generates propulsion and steering [12] [13]. We
adapted this design to modular self-assembling behavior in
previous work [14]. Our design — the Modboat — consists
of two passive flippers mounted to a cylindrical bottom body,
with hard stops defining fully open positions. A motor (un-
der closed-loop position control) spins an upper body that
functions as the driving mass, which forces the bottom body
to spin in the opposite direction; a combination of drag and
centrifugal action forces the leading flipper open against its
hard stop, which then provides thrust. Reversing the motor
pulls the open flap closed while forcing the opposite one
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Fig. 2. A simplified top view of the Modboat. The bottom body is shown in
gray with the flippers in blue, while the top body is black. The angles θ and
θt are measured from the world frame y axis, while φ is the relative angle
between the two bodies.

open to provide thrust. An oscillation of the driving mass thus
leads to a paddling motion that pushes the robot forward. This
propulsion mechanism is inexpensive and capable of modular
self-assembly.

In both previous systems [13] [14], the propulsion is driven
by a sinusoidal oscillation in which steering is achieved by
varying duty cycle and frequencies. The ability to turn is
demonstrated, but neither work shows this principle following
a trajectory. It turns out to be difficult to precisely control the
orientation using frequency control. In this work we develop a
control system and a novel method for steering the Modboat
based on pauses and show it to be superior for trajectory
following.

This paper is organized as follows. In Section II we in-
troduce the dynamic model underlying the Modboat and in
Section III we define the heading as the control variable. In
Sections IV and V we propose two motion primitives for the
system and associated controllers for each. Then in Section VI
we evaluate the motion primitives and controllers, the results
of which are discussed in Section VII.

II. MODELING

We define a stroke as a period during which the motor
rotates in a single direction, i.e. either of the two cases in (6).
A cycle is then defined as a full period, i.e. two strokes.

A. Continuous Model

A planar model is developed by Refael and Degani [13].
The assumptions made in developing the model are reproduced
in our previous work [14], where a detailed description of
the operating principles of the system is presented. The most
relevant assumption for this work is that the translational
velocity of the robot is negligible compared to its angular
velocity. This allows the forces/torques acting on the flippers
to be a function of the orientation of the bottom body θ and
its derivatives only, which simplifies the model.

The orientation equation from the final equations of motion
[14] is shown in (1), and a simplified diagram is presented
in Fig. 2. Ib and It are the inertias of the bottom and top
bodies, respectively, while K[kg m2] and Cr[kg m2 s−1] are
constants. φ represents the relative angle between the bottom
and top bodies. It is the only actuated variable and is taken as
the input to the system (generally as a sinusoid) [13] [14].

(Ib + It)θ̈ = −K sgn (θ̇)θ̇2 − Cr θ̇ − Itφ̈ (1)

The three terms on the right hand side refer to — in order —
thrust from the flippers, rotational drag opposing the rotation
of the bodies in the water, and the angular momentum imparted
by the actuated rotation of the top body.

B. Discrete Model

To remove the non-linearity in (1) and simplify the control
problem, we propose a discrete model. Considering the ori-
entation only, we observe that each stroke imparts angular
momentum L as in (2), where we assume that the thrust
provided by the flippers is the primary force, the duration of
the integral is such that sgn (θ̇) is constant throughout, and
the subscript i ∈ {1, 2} refers to the stroke.

Li = −K sgn (θ̇)

∫
θ̇2dt (2)

Let the overall orientation Θ refer to some single orien-
tation representative of a cycle and overall angular velocity
Ω = ∆Θ/∆T to the change in overall orientation per cycle.
The overall change in angular momentum (∆L = L2 − L1)
is proportional to the overall angular acceleration ∆Ω/∆T ;
or ∆L = It∆Ω/∆T ;

We assume that some map exists from the inputs that
define φ(t) to ∆L, and from there to angular acceleration α
imparted by a cycle, (3). Then for the new input α we can
numerically integrate as in (4) for the overall orientation-only
state

[
Θ Ω

]T
at cycle k, where the discretization time ∆T

is a full cycle.

α = f
(
φ(t)

)
(3)[

Θ
Ω

]
k+1

=

[
1 ∆T
0 1

] [
Θ
Ω

]
k

+

[
0

∆T

]
αk (4)

This discrete linear model is far simpler than (1). By
selecting inputs at the beginning of a cycle, letting the system
run, and then evaluating at the end of the cycle, the problem
of controlling the Modboat becomes more tractable.

III. HEADING

Motivated by the orientation-only model in (4), we propose
to focus control on the gross direction of motion of the
Modboat, rather than the instantaneous orientation (which
oscillates as it moves), and define the heading h ∈ (−π, π]
as the overall orientation representative of this direction of
motion. The discrete control problem is then to define the input
φ(t) for each cycle that will drive the heading to a desired
value. For position control, this desired heading would be the
angle from the (x, y) coordinates of the center of Modboat to
the target.

The Modboat can only produce positive thrust; for a sym-
metric sinusoidal input φ(t) the net thrust will be generally
towards the tail at the center-line of the rotation φ(t) = φ0.
We can therefore approximate the heading as the average
orientation θ̄t over a cycle, where θt = θ+φ is the orientation
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Fig. 3. An example frequency modulation waveform φ(t) as defined in (6)
with three sections. The parameters

[
T1 T2

]
are given by (a):

[
1.5 1.5

]
,

(b):
[
0.5 2.5

]
, and (c):

[
2.5 0.5

]
, with

[
A φ0

]
=

[
2 0

]
for all.

Note that an extra time offset is added at the beginning because in practice
the initial value of φ is 0.

of the top body (see Fig. 2). Thus if φ(t) is at a peak at ti
and then again at ti+1, then we calculate the heading h as in
(5).

h =
1

ti+1 − ti

∫ ti+1

ti

θt(t)dt (5)

While the direction of motion should be accurately deter-
mined by the heading (i.e. the vehicle moves generally towards
the direction it is facing), this method may be less accurate
when external flows are present; translation not caused by the
flippers may not be detected by (5).

IV. FREQUENCY MODULATION

A. Steering

Following Refael and Degani [13], we can propel the
Modboat using inputs of the form given in (6) and illustrated
in Fig. 3, which defines a piecewise continuous sinusoid with
varying frequencies ω1 and ω2. T1 and T2 are the periods
associated with complete rotations at frequencies ω1 and ω2,
respectively, A is the amplitude, and φ0 is the zero-orientation
of the driving mass. The 4-tuple

[
T1 T2 A φ0

]
defines the

input function.

φ(t) =


φ0 +A cos (ω1t) t ∈

[
0, T1

2

)
φ0 −A cos

(
ω2

(
t− T1

2

))
t ∈
[
T1

2 ,
T1+T2

2

)
(6)

The robot can be “steered” by varying the periods of
oscillation from φ(t), which forces an oscillation of θ(t).
When T1 = T2, the oscillation is symmetric and results in
oscillations about a straight line. When T1 < T2, however,
the stroke that activates the left flipper — t ∈

[
0, T1/2

)
—

is faster than the stroke that activates the right. The angular
momentum imparted by a single flipper from (2) shows that
the faster stroke provides more thrust resulting in a clockwise
rotation. We can therefore turn by lowering one of the periods,
but in practice this method is often limited by the maximum
velocity of the motor.

B. Control

The discrete system presented in (4) is controllable, so if the
mapping f in (3) were known and invertible, it would be easy
to design a controller using α and then invert it to obtain the
control parameters

[
T1 T2 A φ0

]
. In theory, f could be

approximated numerically by solving the equation of motion
(1) numerically on a reasonable submanifold of the input space
R4 (where reasonable includes considerations such as Ti > 0,

Fig. 4. An example pause modulation waveform φp(t) as defined in (9) with
three sections. The base parameters are given by

[
T1 T2 A φ0

]
=[

1.5 1.5 2 0
]
, and the pause parameters

[
tps tpl

]
are given by (a):[

0 0
]

(b):
[
0 0.5

]
and (c):

[
0.75 0.5

]
. Note that an extra time offset

is added at the beginning because in practice the initial value of φ is 0.

etc.). This depends on the accuracy of the model, which is
known to lose accuracy as T1 and T2 diverge [13]. Moreover,
it is likely that f shows dependence on exterior factors, such
as flow velocity, and there is no guarantee that it is invertible,
making its calculation difficult.

Instead we use PID control. For simplicity, we assume
that A (which can be assumed to be related to translational
velocity) and φ0 are held constant, and only T1 and T2 will be
varied. Because f−1 is not known, we assume — by an abuse
of notation — that for an initial symmetric input T1 = T2 = T
the following inputs will be of the form T1 = T ± αk and
T2 = T ∓ αk, leaving the total period unchanged. Then a
PID controller can be defined as (7) and (8) with the terms
in (8) representing the proportional, derivative and integral
terms respectively; because PID is a very general approach, it
is possible that it will succeed despite all the simplifications
made to derive it.

ek = Θd,k −Θk (7)

αk = Kpek +Kd
d

dt
(ek) +Ki

∫
ekdt (8)

V. PAUSE MODULATION

A. Steering

When driven using (6), each stroke imparts some angular
momentum. When T1 = T2, the angular momenta from the
two strokes cancel each other, resulting in no net change
in overall angular velocity, a straight heading and a forward
motion.

Consider introducing a pause into (6), beginning at time tps
and lasting for tpl; this waveform is given in (9), where φ(t)
is defined by (6). For steering, we restrict tps to either 0 or
T1/2, i.e. either the peak or the trough of φ(t). An example
waveform is shown in Fig. 4.

When the pause is reached φ̇ = 0, but θ̇ lags φ̇ and is
non-zero. Thus, for the duration of the pause the Modboat
will drift, affected only by drag. When the cycle finishes, no
net change in angular momentum has been imparted because
T1 = T2. But the drift over t ∈ [tps, tps + tpl] causes a net
change in heading.

φp(t) =


φ(t) t ∈

[
0, tps

)
φ(tps) t ∈

[
tps, tps + tpl

)
φ(t− tpl) t ∈

[
tps + tpl,

T1+T2

2 + tpl

) (9)

This motion primitive is capable of large magnitude turns
since rotational drag is low; Fig. 5 shows that for a base cycle
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Fig. 5. Change in overall orientation per cycle for open-loop pause
modulation over a base waveform defined by

[
T1 T2 A φ0

]
=[

1.5 1.5 2 0
]
. The signed pause-length t′pl is defined as in (10). The

data and best-fit function are shown.

of T1 = T2 = 1.5s a pause tpl / 4s is sufficient to turn any
amount in (−π, π]. Moreover, it is free in terms of actuator
effort. However, this method does require more time; it may
sometimes be impractical to wait too long to turn, especially
in safety-critical scenarios.

B. Control

Although it is possible to modulate both frequency and
pauses within the input waveform (9), for simplicity we choose
to focus on modulating only the pause parameters.

To avoid discontinuity in angular velocity the pause start is
restricted to either the peak or trough of φ(t): tps ∈ {0, T1/2}.
For simplicity, we define the signed pause length as a single
input variable t′pl ∈ R, that maps to

[
tps tpl

]
as in (10). This

allows us to consider a 1-dimensional control space consisting
of t′pl only.

[
tps tpl

]
=


[
0
∣∣∣t′pl∣∣∣] t′pl < 0[

T1

2 t′pl

]
t′pl > 0

(10)

The pause-waveform was tested on the Modboat by eval-
uating the trajectories produced for t′pl ∈ [−5, 5]s for[
T1 T2 A φ0

]
=
[
1.5 1.5 2 0

]
. The orientation of

the boat is plotted in each case, and the orientation at suc-
cessive peaks is taken as the overall orientation. The resulting
trajectories are found to be linear in overall orientation as a
function of time with Ω(tpl) as the overall angular velocity
from the slope of the line of best fit.

The resulting function is reasonably one-to-one, so we use
an optimizer [15] to solve for a piecewise-linear continuous
function that best fits the data. The results are multiplied by
the cycle-time (T1 + T2)/2 + tpl to get the change in overall
orientation per cycle, shown in Fig. 5.

This function — implicitly inverted — defines a one-to-
one map from ∆Θ → tpl, which can be used directly as a
controller. The model in (4) can thus be simplified further to
a single-integrator. For any desired heading, we use (11) to
directly compute ∆Θ and obtain the needed input t′pl.

Θk+1 = Θk + ∆Θk(t′pl) (11)

In the single-integrator model from (11) the control input
fully corrects the overall orientation by the end of the cycle.
We must therefore modify the heading calculation in (5). We

TABLE I
SUMMARY OF EXPERIMENTAL RESULTS FOR STEP INPUT TESTS. RMS

ERROR IS MEASURED ONLY AFTER THE RISE TIME.

Pause Frequency

Metric Median
Interquartile

Range
Median

Interquartile
Range

Rise time [cycles] 0.82 0.75–0.88 4.2 3.8–5.7
Dist. to rise [m] 0.12 0.11–0.16 0.39 0.36 – 0.62
RMS error [rad] 0.17 0.083 – 0.20 0.25 0.21 – 0.32

Fig. 6. A photo of the experimental setup, demonstrating the Modboat during
a waypoint tracking experiment. The approximate locations of the waypoints
are superimposed on the image.

replace ti in (5) with ti + tps + tpl, i.e. we use the end of the
pause as the start of integration.

VI. EXPERIMENTS

The Modboat was tested in a 4.5m× 3.0m× 1.2m tank of
water (shown in Fig. 6) equipped with an OptiTrack motion
capture system that provided planar position, orientation, and
velocities at 120Hz. A MATLAB interface was used to record
the data, calculate the heading and control parameters, and
send commands to the boat for course correction. A set of
base parameters

[
T1 T2 A φ0

]
=
[
1.5 1.5 2 0

]
was

heuristically determined to provide reasonable open-loop per-
formance1 and was used for all experiments. For the frequency
controller, this defines the T1 and T2 that are modified by αk

in (8), while for the pause controller this is the set of constant
parameters over which t′pl is varied.

Each controller was tested for its response to step inputs.
The Modboats were placed in the tank and — for all tests —
commanded a desired heading of π. The boats were released
facing either approximately in the correct direction or ±π/2
offset from it, which simulated step inputs of {−π/2, 0, π/2};
the boat would begin swimming in the direction it faced and
then correct towards the fixed desired orientation. Due to
floating drift the evaluations performed on the results aim to
be agnostic to initial conditions.

For each step response test, we evaluated the rise-time, the
distance traveled over the rise period, and the steady-state error

1This set of parameters provides an oscillation fast and large enough to
fully open the flippers, while being slow enough to be symmetric to within
the motor and micro-controller specifications.
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Fig. 7. Sample response of the two controllers to a step input of ≈ π/2;
control begins when the first heading measurement is obtained, at 1 cycle.
The frequency controller lags significantly behind the pause controller.

over multiple iterations. The results for all tests and starting
positions are shown in Table I. Both controllers perform well,
but the pause controller shows superior performance in all
three metrics. A sample response from the dataset for each
controller is shown in Fig. 7; the pause controller responds
far more quickly than the frequency controller. We note that
the frequency controller in Fig. 7 begins at a disadvantage, but
its response is sufficiently worse as to not be attributable to this
factor, and this effect persists across starting conditions. This
is clear in Table I, where the step magnitude is not considered.

Since both controller designs assume the inability to plan
exact trajectories, we approximated trajectory planning by a
series of discrete waypoints. The Modboat was directed to a
waypoint until it was within 20cm, at which point the next
waypoint in sequence would be swapped into the controller.
The waypoints are far enough apart that approximately 10 – 20
cycles are required before reaching the next one. We tested the
ability of the controllers to swim in different patterns; each test
was run for 2min, although it was terminated early if the final
waypoint was reached. The resulting trajectories are shown
in Fig. 8, where the pause controller successfully completes
each task while the frequency controller struggles. A heading
vs. time plot for the square trajectory in Fig. 8a is shown in
Fig. 9.

VII. DISCUSSION

Table I shows the results of step input tests comparing the
two controllers over all inputs. The large interquartile range
shown by the frequency controller is reasonable since we
consider step inputs of 0 and π/2rad, but it stands in stark con-
trast to the consistency shown by the pause controller across
inputs. The pause controller shows superiority in rise-time and
distance traveled during the rise-period; it achieves the correct
orientation in one cycle and only ≈ 12cm, regardless of the
step input. The frequency controller, meanwhile, takes much
longer to rise and travels 3 − 5 times as far. An example of
this response is shown in Fig. 7.

The advantage in steady-state error, shown as RMS error
after the rise period, is less clear but still evident. The pause
controller shows a lower median and a smaller range across the
various step-inputs, demonstrating more consistent and better
performance. The error range (0.083− 0.20rad or 4.6− 11◦)
is not ideal, but is still lower than the error for the frequency
controller, despite the integral term in the PID loop. The

(a)

(b)

Fig. 8. Waypoint following executed by both controllers; the frequency
controller is marked by red dashes, and the pause controller by a blue line.
The waypoints are indicated by dotted circles and are labeled by the order in
which they were commanded.

addition of an integral term in the pause controller can reduce
steady-state error further.

The advantages provided by the pause controller are demon-
strated further in the waypoint following tests shown in Fig. 8
(and in the accompanying video). The pause controller is
capable of swimming in square (Fig. 8a), triangular (Fig. 8b),
and linear (not shown) patterns while following reasonably
linear trajectories between the waypoints, even when they
are only ≈ 1m apart. The frequency controller struggles
with following linear trajectories between the waypoints and
shows increasingly worse performance when sharper turns are
required.

These differences are largely due to the significant advan-
tages displayed by the pause control in rise-time and distance
traveled during rise (see Table I). The pause controller is able
to turn quickly and sharply (see Fig. 9a), allowing it to follow
tight configurations of waypoints. The frequency controller
requires a longer time to turn and much more distance to do
so, forcing it to struggle with tight configurations. This can be
seen in Fig. 9b; the heading lags the desired value and does
not converge, and the associated translation causes the desired
heading to vary significantly.

The close placement of the waypoints in Fig. 8 was largely
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(a)

(b)

Fig. 9. Heading vs. time plots for the waypoint experiments in Fig. 8a. The
pause controller is shown in (a), the frequency controller in (b). Vertical dotted
lines show waypoints reached.

due to the constraints of our testing environment. In many
ocean applications the waypoints may be much further apart,
and this would allow the frequency controller more space and
time to correct, resulting in better waypoint following. But
these results still demonstrate the fundamental limitations of
the frequency-driven motion primitive and the advantages of
the pause-driven motion primitive. Moreover there are still
aquatic applications that require relatively precise placement,
and of the two primitives considered only the pause controller
is capable of such tasks.

VIII. CONCLUSIONS

In this work we have described two motion primitives
for the Modboat, whose design is presented in detail in
our previous work in [14]. The first primitive — frequency
modulated steering — was first proposed by Refael and
Degani in [13] but was developed into closed-loop control in
this work, while the second — pause modulated steering —
is a novel contribution described in this work. For each motion
primitive, we have also presented a closed-loop controller to
drive the measured heading to a desired value.

Through experimental evaluation of step-response and way-
point tracking, we have shown that our novel pause modulation
primitive significantly outperforms the frequency modulation
primitive due to its ability to sharply correct step inputs of
effectively arbitrary magnitude. This makes the pause modu-
lation controller well suited for waypoint tracking on the order
of 1m and sensor placement within ≈ 0.4m in calm waters.
We note that these distances are derived heuristically from
the simple orientation-only approach to trajectory planning
used in this work, and that more intelligent trajectory planning
that takes translation into account could be used to increase
precision.

This work considered only one set of base parameters over
which both frequency and pause modulation were applied.
This choice was made to create a tractable problem and to
evaluate the feasibility of pause control as a unique motion
primitive, but neglects the possibilities of the full parameter
space. We intend to explore the parameter space including
varying the period of oscillation and its amplitude, as well

as relaxing the requirement that T1 = T2 (i.e. combining
frequency and pause modulation). We will also evaluate our
control strategy in the presence of external flows, which will
be crucial in allowing our system to perform in unpredictable
ocean environments. The presence of waves may require a full
3D consideration rather than a planar model, while currents
may require quantifying translation as well as orientation.

We will develop docking procedures for multiple Modboats
as we explore group dynamics and group propulsion. Addi-
tional sensing approaches applicable to ocean environments
will also be explored, as readily-available GPS data cannot
provide the orientation measurements we need for control.
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