
International Journal of Robotic Computing
Vol. 3, No. 1 (2021) 121-145
© KS Press, Institute for Semantic Computing Foundation
DOI: 10.35708/RC1870-126268

A Quadratic Programming Approach to Manipulation
in Real-Time Using Modular Robots

Chao Liu and Mark Yim

University of Pennsylvania at 3401 Grays Ferry Avenue, Philadelphia, US
{chaoliu,yim}@seas.upenn.edu

Received (03/17/2021)
Accepted (04/14/2021)

Abstract. Motion planning in high-dimensional space is a challenging
task. In order to perform dexterous manipulation in an unstructured en-
vironment, a robot with many degrees of freedom is usually necessary,
which also complicates its motion planning problem. Real-time control
brings about more difficulties in which robots have to maintain the sta-
bility while moving towards the target. Redundant systems are common
in modular robots that consist of multiple modules and are able to trans-
form into different configurations with respect to different needs. Differ-
ent from robots with fixed geometry or configurations, the kinematics
model of a modular robotic system can alter as the robot reconfigures
itself, and developing a generic control and motion planning approach
for such systems is difficult, especially when multiple motion goals are
coupled. A new manipulation planning framework is developed in this
paper. The problem is formulated as a sequential linearly constrained
quadratic program (QP) that can be solved efficiently. Some constraints
can be incorporated into this QP, including a novel way to approximate
environment obstacles. This solution can be used directly for real-time
applications or as an off-line planning tool, and it is validated and demon-
strated on the CKBot and the SMORES-EP modular robot platforms.

Keywords: Manipulation; Quadratic Programming; Modular Robots.

1 Introduction
Manipulation tasks are common in robotics applications. In unstructured, clut-
tered environments, these tasks are usually executed by redundant robots to
reach larger workspaces while avoiding obstacles and other constraints. This
results in motion planning in high-dimensional space.

The motion planning problem is usually solved by some well developed frame-
work (e.g. MoveIt! [6]) containing three components: a path planner, a trajectory

2 C. Liu et al.

generator, and a tracking controller. The path planner is responsible for gener-
ating collision-free paths. The trajectory generator smooths the computed paths
and generates trajectories that can be parameterized by time while satisfying
motion constraints, such as maximum velocities and accelerations. The track-
ing controller guarantees the motion of the robot when executing the generated
trajectories. This type of framework has shown successful applications in many
scenarios but rarely achieves real-time performance for all three components in
high dimensions. Some approaches combined path planning with trajectory op-
timization that can directly construct trajectories resulting from optimization
over a variety of criteria. These approaches are related to optimal control of
robotic systems.

Modular self-reconfigurable robotic systems are usually composed of a small
set of building blocks with uniform docking interfaces that allow the transfer of
mechanical forces and moments, electrical power, and communication through-
out the robot [38]. These platforms are designed to be versatile and adaptable
with respect to different tasks, environments, functions or activities. A single
module in a modular robotic system usually has one or more degrees of freedom
(DoFs). Combining many modules to form versatile systems results in robots re-
quiring representations with high dimensions. This dimensionality makes control
and motion planning difficult. That the system is not a single structure but can
take a very large number of configurations (typically exponential in the number
of modules) requires an approach that can be applied to arbitrary configurations.
For example, a modular robot configuration built with PolyBot [37] modules is
shown in Fig. 1 which has multiple serial kinematic chains. This is different from
common multi-limb systems with a single base. These systems can be modeled
such that chains are decoupled.

In a modular robotic system, modules usually are approximated by simple
shapes such as a cube or a sphere. This is often useful for reconfiguration but can
make manipulation more complex. Rather than two long fingers in a parallel jaw
gripper, to obtain similar geometry, a modular robot may require many modules
to form those long fingers. This results in grasping type of motions in which
two or more chains can behave as a multi-arm system to clamp an object [33].

Fig. 1: A modular robot configuration built by PolyBot modules is composed of
multiple chains [37].

QP Approach to Manipulation 3

Hence, in order to grasp some object, motion planning for multiple (potentially
high DoF) chains are necessary. In addition their motions are strongly coupled.
This fact leads to a more complicated control and planning problem.

In this paper, we present a new approach for real-time manipulation planning
and control as well as a novel way to approximate environment obstacles, and
apply it to two modular robotic systems. In order to solve the problem in gen-
eral, an universal kinematics model is required for arbitrary configurations. This
approach concomitantly can be easily extended, such as a dual-arm system or a
modular robot configuration that has multiple chains. We propose a quadratic
programming approach that can be solved efficiently for real-time applications.
This requires that system control stability, hardware motion constraints (joint
limits and actuation limits), and collision avoidance can be incorporated into this
quadratic program (QP) as linear constraints. One advantage of this approach
is that the large variety of configurations and kinematic structures found from
modular robotic systems can be represented easily as linear constraints, including
situations where multiple portions of the robot may have different simultaneous
goals. Our approach can also be used as an off-line trajectory planner by simple
Euler integration. The framework is tested and evaluated on CKBot [39] and
SMORES-EP [20] in the end.

The paper is organized as follows. Sec. 2 reviews relevant and previous works.
Sec. 3 introduces the details to derive the kinematics model required to describe
the motion of any modular robotic configuration. Sec. 4 discusses the approach
to control and motion planning for given tasks. Some experiments are validated
in Sec. 5 with some analysis. Sec. 6 includes the conclusions and future work.

2 Related Work
High-dimensional motion planning and control have been studied over several
decades. In this section, we review several types of approaches from previous
work and some special approaches for modular robots.

2.1 Motion Planning for Manipulation

Artificial potential field manipulation planning methods can avoid searching in
high-dimensional configuration space, planning in operational space directly [16].
Robots can avoid collision in real time, but may get stuck at local minima. An-
alytical navigation functions that have a unique minimum at the goal config-
uration avoiding local minima are shown in [30]. However, it is usually com-
putationally expensive to build such a navigation function in general. A Monte
Carlo technique was applied to escape local minima of the potential by executing
Brownian motions [3].

Sampling-based approaches have been used widely for high-dimensional mo-
tion planning problems. The probabilistic roadmap (PRM) has been demon-
strated on planar articulated robots with many DoFs [2,15]. Expansive con-
figuration space was proposed to resolve the narrow passage issue which is a
common problem for sampling-based planners [12]. Rapidly-exploring Random
Trees (RRT) approach was later presented in [17] to deal with nonholonomic con-
straints. An optimal sampling-based planner (RRT∗) is introduced in [14] with

4 C. Liu et al.

less efficiency. These approaches require post-processing to generate smooth tra-
jectories in order to be executable for real tasks.

Search-based planners rely on the discretization of the space. However these
approaches are generally not suitable for high-dimensional problems. For exam-
ple, naïve A∗ can rarely scale to large complicated planning problems. In order
to increase the efficiency of these approaches, a number of suboptimal heuris-
tic searches have been proposed [8,18,19]. These methods are promising but are
currently computationally inefficient when solving motion planning problems in
high-dimensional space.

Once a feasible path is found, a trajectory generator is needed to smooth and
shorten the computed path with time parameterization. Trajectories are modeled
as elastic bands that need to maintain equilibrium states under internal contrac-
tion forces and external repulsion forces [28,5]. Obstacles in the workspace are
considered directly which is also beneficial for real-time trajectory modification
while a precomputed path is necessary.

Another class of planners are related to optimal control. Rather than separate
the planning process into two phases (path planning and trajectory planning),
trajectories are constructed directly by these frameworks which optimize over
a variety of criteria. A global time-optimal trajectory generator is introduced
in [35]. It combines a grid search with a local optimization to obtain the global
optimal solution. This approach requires the representations of obstacle regions
in configuration space which is difficult to derive for high-dimensional problems.
CHOMP [29,42] formulates the cost to be the combination of trajectory smooth-
ness and obstacle avoidance, and gradients for these two terms are needed. This
approach uses pre-computed signed distance fields for collision checking. A sim-
ilar idea is used in ITOMP that can also deal with dynamic environments [27].
In contrast, STOMP [13] can also handle more general objective functions for
which gradients are not available by using trajectory samples, but can be dif-
ficult to determine the number of samples. A sequential convex optimization
approach is presented in [32] which adds new constraints and costs during the
motion so as to tackle a larger range of motion. Collision is detected by checking
the intersection of the swept-out volume of the robot in an interval and ob-
stacles, and a collision-avoidance penalty gradient can be incorporated into the
optimization problem to ensure safety. These works mainly focus on single-high-
DoF-arm manipulation tasks. Given the trajectories of end-effectors, an optimal
control framework is formulated to solve whole-body manipulation tasks [34].
A repulsive velocity can be applied to any rigid body whenever it collides with
any obstacle based on a physical simulator. Reachable sets are used for safe and
real-time trajectory design in [11], but the reachability analysis has to be offline.
Some optimal controllers handle the obstacles by mixed integer programming
which is known to be an NP-hard problem [31].

Our approach is also related to optimal control and differs from these pre-
vious works in two ways: (a) the way in which the motion planning problem is
formulated and (b) the simple model that approximates the environment ob-
stacles. We incorporate multiple motion goals into the objective function in the

QP Approach to Manipulation 5

form of feedback controllers to guarantee the trajectory tracking performance
or efficient search for navigation, and the output can be applied on the system
directly to achieve real-time performance. During the motion, both the objective
function and constraints may be updated according to the current scenario which
allows our approach to tackle a wider range of tasks. For collision avoidance, we
present a new way to simplify obstacles dynamically during the motion, and the
collision avoidance constraint can be modeled as linear constraints in order to
solve the optimization problem efficiently. A collision-avoidance penalty is added
to the objective function when any rigid body is near any obstacle in the form
of the projected motion from the rigid body to this obstacle. Our approach is
well suited for real-time applications since its output can be applied on robotic
systems directly in real-time, or can be used as an off-line trajectory planner by
integrating the output over time.

2.2 Modular Robot Control and Planning

Modular robots are inherently systems with many DoFs. They are usually com-
posed of a large number of modules with each module has one or more DoFs.
This paper addresses the manipulation tasks of modular robots that form con-
figurations in tree topologies. That is they are constructed from multiple se-
rial chain configurations without forming loops.Work related to manipulation of
modular robot systems includes inverse kinematics for highly redundant chains
using PolyBot [37,1], and constrained optimization techniques with nonlinear
constraints [7]. Due to complicated constraints in these approaches, real-time
applications for large systems cannot be guaranteed and numerical issues have
to be addressed when solving the optimization problem in the presence of obsta-
cles. Another set of related work includes controller design for modular robots,
such as an adaptive control approach using a neural network architecture [25], a
virtual decomposition control approach [41], a distributed control method with
torque sensing [24], and a centralized controller [9]. These approaches consider
the control problem in a free environment and require extra motion planning to
fully control the system in a complex environment.

This paper is built upon the work from our conference paper [21]. In the
conference paper, we introduced a quadratic programming approach to address
real-time control and planning, as well as a general solution to build kinematics
models of modular robotic systems. In this work, we present a sequential opti-
mization approach in which the objective function and constraints are updated
according to the current situation to ensure safety. In order to handle more com-
plex environments, a novel model is introduced to approximate obstacles by their
significance to the current robot motion.

3 Kinematics For Modular Robots
In this section, we derive a general kinematics model for modular robots. For
other manipulators, a similar technique can be applied to derive necessary models
in order to utilize our planning framework.

6 C. Liu et al.

(a) (b)
Fig. 2: (a) A CKBot UBar module has one DoF and four connectors. (b) A
CKBot CR module has one DoF and six connectors.

3.1 Kinematics Graph

The representation of a modular robot configuration is discussed in [23] which
is an undirected graph G = (V,E). Each vertex v ∈ V represents a module and
each edge e ∈ E represents the connection between two modules.

We use a module graph to model a module’s topology which includes all con-
nectors and joints. A module graph is a directed graph Gm = (Vm, Em): each
vertex is a rigid body in the module which is either a connector or the module
body, and each edge represents how two adjacent rigid bodies are connected.
The transformations among all rigid bodies are determined by the joint set and
the geometry. For example, a CKBot UBar module in Fig. 2a is a single-DoF
module as well as four connectors (TOP Face or T , BOTTOM Face or B, LEFT
Face or L, and RIGHT Face or R). For simplicity, when the module joints are in
its zero position, all rigid bodies are in the same orientation and the translation
offsets among them are determined by the module geometry. Let B be fixed in
M, then the homogeneous transformations amongM, L, and R are invariant of
the joint parameter θ because they are rigidly connected. Only the homogeneous
transformation between M and T is not invariant to θ. This relationship can
be fully represented in a directed graph shown in Fig. 3a. The edge direction
denotes the direction of the corresponding forward kinematics. Gm is the set
of unique module graphs Gm for a modular robotic system since some systems
have more than one type of modules (e.g., CKBot in Fig. 2).

In general, given a module m with connector set C and joint set Θ, a frame
C is attached to each connector c ∈ C and frameM is attached to the module
body. Let mapping gF1F2 : Q→ SE(3) describe the forward kinematics from F1

to F2 in joint space Q, then ∀c ∈ C, gMC and gCM can be defined with respect
to Θ. The results for CKBot CR modules and SMORES-EP modules are shown
in Fig. 3b and Fig. 4. With a module graph model, we can easily obtain the
kinematics graph GK = (VK , EK) for a modular robot configuration which
is constructed by composing the modules by connecting connectors. A directed

QP Approach to Manipulation 7

(a) (b)
Fig. 3: (a) The module graph of a CKBot UBar module in which gMB, gBM, gML,
gLM, gMR, and gRM are invariant of θ. (b) The module graph of a CKBot CR
module in which gMBa , gBaM, gMBt , gBtM, gMT , gTM, gML, gLM, gMR, and
gRM are invariant of θ.

(a) (b) (c)
Fig. 4: (a) A SMORES-EP module has four DoFs and four connectors. (b)
The frames of all rigid bodies are shown and B is fixed in M. (c) The mod-
ule graph of a SMORES-EP module in which gMB and gBM are invariant of
Θ = (θl, θr, θp, θt).

edge is used to denote each connection and the transformation between the two
mating connectors is fixed since they are rigidly connected. Using this kinematics
graph, a kinematic chain from frame F1 to frame F2 can be derived by following
the shortest path GK : F1 F2. This creates a graph with no loops. A simple
configuration built by two CKBot UBar modules is shown in Fig. 5a. Frame W
is the world frame and module m1 is fixed to it via its BOTTOM Face. The kine-
matics graph for this configuration is shown in Fig. 5b and the kinematic chain
from W to T2 shown in Fig. 5c. All the edges have fixed homogeneous transfor-
mations except for edge (M1, T1) and edge (M2, T2), and we can conclude that
the forward kinematics mapping is gWT2 : T2 → SE(3) where Tp represents the
p-torus. However, we can also see that all the edges in the shortest path fromW
to L1 have fixed homogeneous transformations, so L1 is fixed in W.

Similar to the configuration discovery algorithm in [23], the kinematics graph
can be built by visiting modules in breadth-first-search order. The given config-
uration is traversed from the module fixed to the world frame W. When visiting
a new module m, denoting its parent via its connector c as m̃ and the mating

8 C. Liu et al.

(a)

(b)

(c)
Fig. 5: (a) A configuration by two CKBot UBar modules. (b) The kinematics
graph model of the configurations. (c) The kinematic chain from W to T2.

connector of m̃ as c̃, record the fixed homogeneous transformation gCC̃ in which
frame C and frame C̃ are attached to c and c̃ respectively. Not until all modules
are visited, is the GK = (VK , EK) of the given configuration constructed. With
this structure, there is no need for case-by-case derivation of the kinematics as
long as the kinematics for each type of module and connection are defined.

3.2 Kinematics for Modules

Recall that given a module m with connector set C and joint set Θ, a frame C
is attached to each connector c ∈ C and frame M is attached to the module
body. For a joint θ ∈ Θ, a twist ξ̂θ ∈ se(3) can be defined with respect to M
in which ξθ = (vθ, ωθ) ∈ R6 is the twist coordinates for ξ̂θ1, and ξ is the set of
the twist associated with each joint. For homogeneous transformation gMC , it is
straightforward to have

gMC = gMC(Θ
C) =

∏
i

exp(ξ̂ΘC
i
ΘCi) gMC(0) (1)

in which ΘC denotes the parameter vector in the joint space of the kinematic
chain fromM to C. If no joints are involved in the kinematic chain fromM to
C, then C is fixed in M and gMC is a constant determined by the geometry of
the module. gCM is just the inverse of gMC .

3.3 Kinematics for Chains

A kinematic chain from frame S to F can be obtained as GK : S F where S
and F are two vertices of GK . In this kinematic chain, all homogeneous trans-
formations between connectors (e.g., gT1B2

in Fig. 5c) are fixed and can be easily
computed. The relative orientation between connectors is determined by exam-
ining the connector design. For example, there are four cases for connecting
SMORES-EP modules shown in Fig. 6b — Fig. 6e due to the arrangement
1 Refer to Chapter 2 in [26] for background.

QP Approach to Manipulation 9

(a)

(b) (c)

(d) (e)
Fig. 6: (a) Kinematics for SMORES modules. (b) — (e) Four cases to connect
R and T .

of the magnets on the connector. The homogeneous transformation gSF can
be computed by multiplying the homogeneous transformation of each edge of
path GK : S F in order. In particular, let S be world frame W, if module
m1,m2, · · · ,mN are involved in this chain, then the position of the origin of F
in W is given by

pWF = gWF
[

0 0 0 1
]ᵀ (2)

and the instantaneous spatial velocity of F is given by the twist

V̂ sWF =

N∑
i=1

Ni∑
j=1

(
∂gWF
∂θij

g−1
WF

)
θ̇ij (3)

in which θij is the jth joint parameter of module mi involved in this chain and
the number of joints of module mi involved in this chain is Ni. Rewrite Eq. (3)
in twist coordinates as

V sWF = JsWF Θ̇
WF (4)

in which

ΘWF = [θ11 · · · θ1N1 θ21 · · · θ2N1 · · · θN1 · · · θNNn]
ᵀ (5)

JsWF =
[
J1 J2 · · · JN

]
(6)

Ji =
[(

∂gWF
∂θi1

g−1
WF

)∨ (
∂gWF
∂θi2

g−1
WF

)∨
· · ·
(
∂gWF
∂θiNi

g−1
WF

)∨]
(7)

and JsWF is the spatial chain Jacobian.
Define the twist of the jth joint of module mi with respect to W as ξ′ij that

is

ξ′ij =

(
∂gWF
∂θij

g−1
WF

)∨
= AdgWMi

ξij

10 C. Liu et al.

in which AdgWMi
is the adjoint transformation2 and ξij is defined in Sec. 3.2 for

each joint in a module with respect to its module body frame. Then Ji becomes

Ji =
[
ξ′i1 ξ

′
i2 · · · ξ′iNi

]
(8)

With this spatial chain Jacobian, the velocity of the origin of frame F is

vsF = V̂ sWFp
W
F =

(
JsWF Θ̇

WF
)∧

pWF (9)

For a module mi in the kinematic chain GK :W F (Mi is a vertex in the
corresponding path), a sub-kinematic chain GK :W Mi can be defined with
joint parameter vector ΘWMi =

[
θ11, θ12, · · · , θīj̄i

]ᵀ where θīj̄i is the parameter
of the j̄ith joint of module mī. For example, take the sub-kinematic chain from
W to M2 in Fig. 5c, then i = 2, ī = 1, j̄i = 1, since there is only one joint
between W and M2 which is the 1st joint of module m1. Then the spatial
module Jacobian JsWMi

or JsMi
for simplicity can be defined as

JsMi
=
[
ξ′11 ξ

′
12 · · · ξ′īj̄i

]
(10)

and the velocity of the origin ofMi is

vsMi
=
(
JsMi

Θ̇WMi

)∧
pWMi

(11)

By replacing all twists associated with joints after the j̄ith joint of module mī

in the spatial chain Jacobian of chain GK :W F with 6× 1 zero vectors, the
spatial module Jacobian can also be written as

JsMi
=
[
ξ′11 ξ

′
12 · · · ξ′īj̄i 06×1 · · · 06×1

]
(12)

then the velocity of the origin ofMi is represented as

vsMi
=
(
JsMi

Θ̇WF
)∧

pWMi
(13)

4 Control and Motion Planning
4.1 Control

Given the kinematic chain GK :W F , the goal of the control task is to move
pWF (or pF for simplicity) — the position of F — to follow a desired trajectory.

Let p̃F = p̃F (t) be the desired trajectory for the robot to track and ṽsF (or
ṽF for simplicity) is the derivative of p̃F , and the error and its derivative are
defined as

e = p̃F − pF
ė = ˙̃pF − ṗF = ṽF − vF

2 Refer to Chapter 2 in [26] for adjoint transformation definition.

QP Approach to Manipulation 11

The error e can converge exponentially to zero as long as it satisfies

ė+Ke = 0 (14)

in which K is positive definite. Substitute e and ė

ṽsF − vsF +K(p̃F − pF) = 0 (15)

With Eq. (9), Eq. (15) can be rewritten as

(JsWF Θ̇
WF)

∧
pF = ṽsF +K(p̃F − pF) (16)

Eq. (16) is the control law to control the position of frame F , namely Θ̇WF

(or Θ̇F for simplicity) — the velocities of all involved joints that satisfy this
equation — can move pF to p̃F in exponential time.

Suppose there are α motion goals p̃F1
, p̃F2

, · · · , p̃Fα , then the control law for
all motion goals can be written as

JP = Ṽ + K(P̃−P) (17)

which is the stack of Eq. (16) for each motion goal. This makes the control
problem for multiple motion goals easier without considering the fact that some
motion goals may be coupled. That is, some kinematic chains may share DoFs.
We need only build an Eq. (16) for each individual motion goal and then stack
them as linear constraints. Building a specific model for different combinations
of motion goals is not necessary.

Recall that a modular robotic system is usually redundant so that there can
be an infinite number of solutions to Eq. (17). This problem is formulated as a
quadratic program

minimize
1

2
Θ̇ᵀΘ̇

subject to JP = Ṽ + K(P̃−P)

(18)

where Θ is the set of joint parameters in kinematic chains GK : W F1,
GK :W F2, · · · , GK :W Fα. Then solving (18) yields the minimum norm
solution of joint velocities at every moment.

The joint position and velocity limits can be added to the quadratic program
as inequality constraints

Θmin −Θ
∆t

≤ Θ̇ ≤ Θmax −Θ
∆t

(19)

Θ̇min ≤ Θ̇ ≤ Θ̇max (20)

in which ∆t is the time duration for the current step. Due to these two con-
straints, K cannot be too aggressive or solutions may not be obtained.

This optimization approach is helpful for many types of motion tasks. The
controller can be used to move pF to a desired position p̃F by setting ṽsF = 0,
and it can also control pF to move at a desired velocity by increasing p̃F by
ṽF∆t for every time step.

12 C. Liu et al.

(a) (b)
Fig. 7: (a) Environment boundary. (b) Sphere obstacle avoidance.

4.2 Motion Planning

The goal of the motion planning task is to enable a cluster of modules to navigate
collision-freely in an environment with obstacles.
Frame Boundaries The cluster of modules can be kept in any polyhedral
region in space which is defined by the boundaries of the environment. For a
module mi in the kinematic chain GK : W F , let ŝij be the unit direction
vector from pWMi

(or pMi
for simplicity) — the origin ofMi in world frame W

— to the jth face of the environment polyhedron perpendicular with distance
dij , then if we enforce the constraint

vsMi
• ŝij = (JsMi

Θ̇)∧pMi
• ŝij ≤ dij (21)

for every side of the environment polyhedron, pMi
will never cross the boundary

of the environment as long as this kinematic chain follows the velocity for much
less than 1 second. Using a sphere with radius ri to approximate the geometry
size of module mi, then the constraint

vsMi
• ŝij = (JsMi

Θ̇)∧pMi • ŝij ≤ dij − ri (22)

will ensure that the module body will always be inside the environment bound-
aries (Fig. 7a). Thus, applying constraint (22) to all modules in the kinematic
chain will ensure the chain will stay inside the environment.
Obstacle Avoidance It is hard to represent the collision-free space analyt-
ically in joint space due to the high DoFs of modular robotic systems. Here we
propose an alternative. The obstacles can be approximated by a set of spheres
using a sphere-tree construction algorithm [4]. Similar ideas have been explored
in [7,40]. There are two issues using this idea. This collision-avoidance constraint
is modeled as the condition that the distance between every sphere approximat-
ing the robot and every sphere approximating the obstacles is greater than the
sum of their radius. This leads to quadratic constraints which are not suitable
for real-time applications of large systems due to numerical issues. In addition,
in order to approximate obstacles with decent accuracy, many spheres have to
be generated. For example, a block object shown in Fig. 8a is constructed by

QP Approach to Manipulation 13

(a) (b) (c) (d)
Fig. 8: A block obstacle (a) is approximated with 3 levels of spheres. (b) 8 spheres
in level 1. (c) 64 spheres in level 2. (d) 470 spheres in level 3.

multiple spheres. A more accurate approximation of this object requires more
spheres (Fig. 8b — Fig. 8d). An advantage of this approach is that obstacles au-
tomatically have some level of buffer that can further guarantee motion safety.
However, using a small number of spheres to approximate an obstacle can lead to
too conservative planning space not finding collision-free paths when they exist.
On the other hand, if there are a large number of spheres, there will also be a
large number of constraints which can prohibit the optimization problem being
solved efficiently without numerical issues.

In this paper, the obstacle avoidance requirement is modeled as linear con-
straints which are efficient to solve stably. For a module mi in the kinematic
chain GK : W F , let s̃ij be the unit direction vector from pMi

to the center
of the jth obstacle sphere oj in world frame W with radius roj . Imaging a plane
Pij with s̃ij as its normal vector and o′j being the point of tangency to this
sphere, then if we enforce the constraint

vsMi
• s̃ij = (JsMi

Θ̇)∧pMi • s̃ij ≤ ‖o′j − pMi‖ − ri (23)

in which o′j = oj−roj sij for every obstacle sphere, pMi will never touch an obsta-
cle (Fig. 7b). In order to enable the system to safely navigate the environment,
we need to apply this constraint for every module.

In order to resolve the difficulty that there can be a large number of obstacle
spheres leading to a large number of constraints, we present a novel way to
significantly simplify these constraints as a pre-processing step for optimization.
As mentioned, for module mi and the jth obstacle sphere, we can compute
an obstacle plane Pij to build a linear constraint. If another obstacle sphere
and module mi are perfectly separated by Pij , then this obstacle sphere can be
ignored for mi at the current planning step, because as long as module mi never
intersects with obstacle plane Pij , mi cannot touch this obstacle sphere. By this
simple rule, we can refine the set of obstacle spheres by iteratively applying an
erase-remove idiom technique efficiently for real-time performance. For example,
a robot configuration built by fourteen CKBot UBar modules is placed in a
cluttered environment where there are six obstacles (Fig. 9a). After applying
the sphere-tree construction algorithm, we derive 373 obstacle spheres in total
shown in Fig. 9b. For the module circled in the figure, after refining the set of all
obstacle spheres, we only need to consider five obstacle spheres. Their obstacle
planes are shown in Fig. 9b. In the current step, Obstacle 1 and Obstacle 6 are

14 C. Liu et al.

behind other obstacles so they can be ignored. And for the rest of the obstacles,
we only need five spheres to approximate these obstacle-avoidance constraints.

4.3 Integrated Control and Motion Planning
With the control law in Sec. 4.1 and the motion constraints in Sec. 4.2, we can
formalize the control and motion planning problem for multiple kinematic chains
GK : W Fi, i = 1, 2, · · · , α as the following quadratic program with linear
constraints

minimize
1

2
Θ̇ᵀΘ̇

subject to JP = Ṽ + K(P̃−P)

Θmin −Θ
∆t

≤ Θ̇ ≤ Θmax −Θ
∆t

Θ̇min ≤ Θ̇ ≤ Θ̇max

(JsMi
Θ̇)∧pMi • ŝij ≤ dij − ri
∀(Mi, fj) ∈ VK × F

(JsMi
Θ̇)∧pMi

• s̃ik ≤ ‖o′k − pMi
‖ − ri

∀(Mi, Sk) ∈ VK × Si

(24)

in which F is the set of all faces of the environment polyhedron and fj is the
jth face, S is the set of all spheres approximating the environment obstacles,
Si ⊆ S is the current set of obstacle spheres under consideration for module mi,
and Sk is the kth sphere in Si. By solving this quadratic program, the minimum
norm solution that satisfies the hardware limits, control requirement, and motion
constraints can be obtained for the current time step given the current state of
every kinematic chain GK :W Fi where i = 1, 2, · · · , α, the desired velocity,
and the position of the origin of each frame Fi.

(a) (b)
Fig. 9: (a) A configuration built by 14 CKBot UBar modules is placed in a
cluttered environment with 6 obstacles. (b) Apply the sphere-tree construction
algorithm on all obstacles and the total number of obstacle spheres is 373. For
the module inside the circle at its current state, only 5 obstacle spheres are
necessary for collision avoidance and their obstacle planes are shown.

QP Approach to Manipulation 15

This formulation can be used for motion tasks with simple constraints (e.g.,
when obstacles are far from robots and motion goals). The equality constraint
enables the motion goal to be achieved very fast with suitable gains. However,
this can also cause difficulties for optimization. For complicated scenarios, we
propose a sequential convex optimization formulation in which the objective
function and constraints are updated when encountering obstacles. Initially the
objective function is in the following form

f(Θ̇) = ‖Θ̇‖2 + λ‖JP− (Ṽ + K(P̃−P)‖2 (25)

in which λ is a weight to address the significance of the feedback controller.
In order to avoid entering space that is hard to maintain safety, we penalize
aggressive motions towards obstacles by adding ‖vsMi

• sij‖2 to the objective
function when the distance between module body frame Mi of the robot and
the jth obstacle is less than dmin, and the objective function becomes

f(Θ̇) = ‖Θ̇‖2 + λ‖JP− (Ṽ + K(P̃−P)‖2 + µij‖vsMi
• sij‖2 (26)

in which µij is also a weight. The new penalizing term means that we want this
module mi to minimize its motion towards the jth obstacle sphere. We have to
check every module to update the objective function and this can be computed
easily by sphere-to-sphere distance.

If moduleMi makes contact with the jth obstacle sphere, this module will
be forced to move away by defining a repulsive velocity as the normal to the
obstacle plane. This can be done by adding a hard inequality constraint

vsMi
• sij =

(
JsMi

Θ̇
)∧

pMi
• sij ≤ γij (27)

in which γij is bounded between −‖vsMi
‖ and 0. This constraint can force module

body frame Mi to move away from the jth obstacle sphere. Note that the
previously added penalizing term for this module µij‖vsMi

• sij‖2 is removed
from the objective function. The larger γij is, the faster the moduleMi moves
away from the jth obstacle.

4.4 Iterative Algorithm for Manipulation Planning

The set of module graphGm described in Sec. 3.1 and the twist set ξ described in
Sec. 3.2 associated with all the joints in different type of modules are computed
and stored. For a modular robot configuration G, assuming the base module m̄
and how it is attached to the world frameW as well as the motion goals p̃F1

, p̃F2
,

· · · , p̃Fα for frame F1, F2, · · · , Fα respectively are known, the set of all faces of
the environment polyhedron is F and the set of all spheres approximating envi-
ronmental obstacles is S, the full algorithm framework is shown in Algorithm 1
with following functions:

– BFS(G,Gm, m̄): Traverse a modular robotic configuration G in breadth-
first-search order starting from m̄ to construct the kinematics graph GK =
(VK , EK);

16 C. Liu et al.

Algorithm 1: Control and Motion Planning
Input: ξ, Gm, m̄, F1, F2, · · · , Fα, {p̃Fi(t)|0 ≤ t ≤ T, i = 1, 2, · · · , α}, F , S
Output: result

1 GK ← BFS(G,Gm, m̄);
2 GK :W Fi ← GetChain(GK ,Fi), i ∈ [1, α];
3 Initialize Θ;
4 Initialize K and ∆t;
5 t← 0;

6 while
α∑
i=1

‖pFi − p̃Fi(T)‖ ≥ ε do

7 Compute ŝij ∀(Mi, fj) ∈ VK × F ;
8 Compute Si ⊆ S ∀Mi ∈ VK and s̃ik ∀Sk ∈ Si;
9 Θ̇ ← SolveQP(GK ,F1,F2, · · · ,Fα, P̃(t), Ṽ(t),P,K,∆t);

10 if Θ̇ = Null then
11 return result ← False;
12 end
13 Publish Θ̇ to the system;
14 t← t+∆t;
15 end
16 return result ← True;

– GetChain(GK ,F): Return the kinematic chain from W to F in GK ;
– SolveQP(GK ,F1,F2, · · · ,Fα, P̃(t), Ṽ(t),P,K, ∆t): Construct and try to solve

the quadratic program described in Sec. 4.3. If failed to solve this program,
then return Null as an invalid solution.

After initializing all the parameters, compute the unit direction vector ŝij
between every Mi ∈ VK and every face of the environment fj ∈ F , compute
Si ⊆ S for every Mi ∈ VK and the corresponding unit direction vector s̃ik
between Mi and every obstacle sphere Sk ∈ Si. If there is no valid solution,
the program should stop, or the program will continue until every pFi is close
enough to the destination p̃Fi(T). If the trajectory p̃Fi(t) is not specified and
only p̃Fi(T) where T →∞ is given, then this algorithm can automatically find a
trajectory for modules to navigate the environment. The output from the planner
can be applied directly online (e.g., running on robot modules) to achieve real-
time performance, or can be integrated over time (one-step Euler integration)
to generate the trajectory for each module or joint.

5 Experiments
We performed several experiments on two hardware platforms to verify the ap-
proach. Here, we show that the framework is able to execute a motion task
with guaranteed control performance on real hardware while satisfying all hard-
ware constraints, frame boundary constraint, and obstacle avoidance. Finally the
framework is tested in a complex scenario showing its ability for online trajectory
optimization for navigation tasks.

QP Approach to Manipulation 17

(a) (b) (c) (d)
Fig. 10: Control pF to follow a given trajectory along +y-axis of W by 15 cm
from the initial pose (a) to the final pose (d). All the modules have to be on the
left side of the boundary. m1, m2, and m3 have to approach the boundary first
(b) and then move away from the boundary (c) to finish the task.

(a) (b) (c) (d)
Fig. 11: Control pF from its initial pose (a) to its final pose (d) by both following
a given trajectory along +y-axis ofW by 15 cm and navigating to the destination
directly. The modules have to move around the sphere obstacle while executing
these two tasks.

5.1 Real-Time Control
CKBot Chain A configuration with four CKBot UBar modules is shown
in Fig. 10a. The base module m̄ = m1 is attached to the world frame W and
frame F is attached to connector T of module m4. A virtual frame boundary
is next to the right side of the base. The task is to control pF to follow a given
trajectory to the position shown in Fig. 10d. Another experiment setup with
five CKBot UBar modules is shown in Fig. 11a. The black sphere is an obstacle,
the base module m̄ = m1 and frame F is attached to connector T of module
m5. Two tasks are executed: control pF to follow a given trajectory and control
pF to approach a specified destination with the final position of pF as shown in
Fig. 11d. The control loop runs at 20 Hz with gain K = diag(1, 1, 1). Fig. 12 and
Fig. 14a shows pF (t) and p̃F of these three tests demonstrating tracking and
navigation performance. The velocity commands for all modules in these two
five-module demonstrations are shown in Fig. 13 and all commands are within
the constraints of each module. Modules move more aggressively at the beginning
when executing the destination navigation task in order to quickly approach the
destination.
SMORES-EP Chain The experiment setup with four SMORES-EP mod-
ules is shown in Fig. 15a. The base module m̄ = m1 is fixed to the world frame

18 C. Liu et al.

0 2 4
Time (s)

0.16

0.20

0.24

x
(m

)

Desired Position x
Current Position x

0 2 4
Time (s)

-0.12

-0.08

-0.04

0.00

y
(m

)

Desired Position y
Current Position y

0 2 4
Time (s)

0.12

0.16

0.20

0.24

z
(m

)

Desired Position z
Current Position z

(a)

0 2 4 6 8
Time (s)

0.18
0.21
0.24
0.27
0.30

x
(m

)

Desired Position x
Current Position x

0 2 4 6 8
Time (s)

-0.08

-0.04

0.00

0.04

y
(m

)

Desired Position y
Current Position y

0 2 4 6 8
Time (s)

0.06
0.09
0.12
0.15
0.18

z
(m

)

Desired Position z
Current Position z

(b)
Fig. 12: The motion of pF : (a) the four-module task; (b) the five-module trajec-
tory following task.

0 2 4 6 8
Time (s)

0.00

0.08

0.16

θ̇ 1
(r

ad
/s

)

0 2 4 6 8
Time (s)

-0.06

-0.03

0.00

θ̇ 2
(r

ad
/s

)

0 2 4 6 8
Time (s)

-0.04

0.00

θ̇ 3
(r

ad
/s

)

0 2 4 6 8
Time (s)

-0.05

0.00

0.05

θ̇ 4
(r

ad
/s

)

0 2 4 6 8
Time (s)

0.00

0.04

0.08

θ̇ 5
(r

ad
/s

)

(a)

0 10 20 30
Time (s)

0.00

0.08

0.16

θ̇ 1
(r

ad
/s

)

0 10 20 30
Time (s)

-0.10

-0.05

0.00

θ̇ 2
(r

ad
/s

)

0 10 20 30
Time (s)

-0.04

-0.02

0.00

θ̇ 3
(r

ad
/s

)

0 10 20 30
Time (s)

-0.04

0.00

0.04

θ̇ 4
(r

ad
/s

)

0 10 20 30
Time (s)

0.00

0.05

0.10

θ̇ 5
(r

ad
/s

)

(b)

Fig. 13: The control input Θ̇ for the five-module chain experiment: (a) the tra-
jectory following task; (b) the destination navigation task.

QP Approach to Manipulation 19

0 10 20 30
Time (s)

0.18
0.21
0.24
0.27
0.30

x
(m

)

Desired Position x
Current Position x

0 10 20 30
Time (s)

-0.08

-0.04

0.00

0.04

y
(m

)

Desired Position y
Current Position y

0 10 20 30
Time (s)

0.06
0.09
0.12
0.15
0.18

z
(m

)

Desired Position z
Current Position z

(a)

0 5 10 15 20
Time (s)

-0.09
-0.06
-0.03
0.00
0.03

x
(m

)

Desired Position x
Current Position x

0 5 10 15 20
Time (s)

-0.08
-0.06
-0.04
-0.02
0.00

y
(m

)

Desired Position y
Current Position y

0 5 10 15 20
Time (s)

0.225
0.240
0.255
0.270
0.285

z
(m

)

Desired Position z
Current Position z

(b)
Fig. 14: The motion of pF : (a) the CKBot five-module destination navigation
task; (b) the SMORES-EP four-module chain destination navigation task.

(a) (b)
Fig. 15: Control a chain of SMORES-EP modules to navigate from its initial
position (a) to a goal position (b). This chain is constructed by four modules
with 16 DoFs.

W and frame F is attached to connector T of module m4. This system has 16
DoFs and the task is to control pF to navigate to a specified destination shown
in Fig. 15b. The control loop runs at 20 Hz and the gain K = diag(0.5, 0.5, 0.5).
The experiment result pF (t) is shown in Fig. 14b. The position sensors installed
in SMORES-EP modules are customizable potentiometers using paints [36,22].
These low-cost sensors with a modified Kalman filter for nonlinear systems are
used to provide position information of each DoF. Due to the limitations of the
hardware, some noise is evident.

CKBot Branch A configuration with nine CKBot UBar modules is shown
in Fig. 16a. The base module m̄ = m1 is fixed to the world frame W. Frame F1

is attached to connector T of module m6 and frame F2 is attached to connector
T of module m9. Chain GK : W F1 and GK : W F2 have common
parts composed by module m1, m2, and m3. The task is to control pF1

and pF2

20 C. Liu et al.

(a) (b) (c) (d)
Fig. 16: Control pF1

and pF2
to follow two given trajectories respectively from

their initial poses (a) to their final poses (d). Module m1, m2, and m3 initially
have to move backward (b) and then move forward (c) in order to control pF1

and pF2
to follow their trajectories.

0.0 2.5 5.0 7.5
Time (s)

0.100
0.125
0.150
0.175
0.200

x
(m

)

Desired Position x
Current Position x

0.0 2.5 5.0 7.5
Time (s)

-0.32

-0.24

-0.16

-0.08

y
(m

)

Desired Position y
Current Position y

0.0 2.5 5.0 7.5
Time (s)

0.275
0.300
0.325
0.350
0.375

z
(m

)

Desired Position z
Current Position z

(a)

0.0 2.5 5.0 7.5
Time (s)

0.100
0.125
0.150
0.175
0.200

x
(m

)

Desired Position x
Current Position x

0.0 2.5 5.0 7.5
Time (s)

0.08

0.16

0.24

0.32
y

(m
)

Desired Position y
Current Position y

0.0 2.5 5.0 7.5
Time (s)

0.300
0.325
0.350
0.375

z
(m

)

Desired Position z
Current Position z

(b)
Fig. 17: (a) The tracking result for pF1

. (b) The tracking result for pF2
.

to follow trajectories respectively to the pose shown in Fig. 16d. The control
loop runs at 20 Hz and the gain is diag(0.1, 0.1, 0.1) for both motion goals. The
tracking performance is shown in Fig. 17a and Fig. 17b.

5.2 Whole-Body Manipulation

A configuration with fourteen CKBot UBar modules is constructed in a simula-
tion environment shown in Fig. 18a. The base module m̄ = m1 is fixed to the
world frame W. There are two obstacles in the workspace which are close to
the robot. The sphere-tree construction outputs 126 obstacle spheres in total to
approximate these two obstacles. Frame F1 and F2 are attached to connector
T of module m9 and module m14 respectively. Similarly, Chain GK : W F1

and GK : W F2 share four modules. The task is to control pF1
and pF2

to
new locations between these two obstacles. The control loop runs at 20 Hz and
the gain is diag(0.1, 0.1, 0.1) for both motion goals. In this complex scenario, the
quadratic program can be constructed and solved by Gurobi [10] in 6.3 ms in

QP Approach to Manipulation 21

(a) (b) (c)

(d) (e) (f)
Fig. 18: Control pF1

and pF2
from the initial pose (a) to new locations between

the obstacles (f). The body composed by module m1, m2, and m3 first moves
backward a little bit (b) and then moves to one side in order to help F1 and
F2 to go around obstacles (c) — (e). After going around obstacles, both frames
can navigate quickly to their destinations. The planned trajectories are shown
as blue lines.

(a) (b)
Fig. 19: (a) Module m9 approaches an obstacle. (b) Module m14 approaches an
obstacle.

average with standard deviation of 2.3 ms and a maximum time of 15.5 ms on a
laptop computer (Intel Core i7-8750H CPU, 16GB RAM).

Initially the motion of pF1
and pF2

are symmetric because modules are all not
very close to obstacles. At this stage, the main body composed by module m1,
m2, and m3 moves backward slightly. Frame F1 approaches one of the obstacle
first (Fig. 18b and Fig. 19a), and the objective function is updated to penalize
the motion of m9 which has to move along the obstacle. Then module m14

approaches the other obstacle (Fig. 18c and Fig. 19b), and a penalty term for
this module is also added to the objective function. Both frames move slowly
during this phase (Fig. 18c and Fig. 18d). We can see from Fig. 20 that pF1

and
pF2

change slowly. Repulsive motion constraints are added to the optimization
function when some module nearly contact obstacles. The main body leans to one

22 C. Liu et al.

0 25 50 75
Time (s)

0.1
0.2
0.3
0.4
0.5

x
(m

)

Desired Position x
Current Position x

0 25 50 75
Time (s)

0.08

0.16

0.24

0.32

y
(m

)

Desired Position y
Current Position y

0 25 50 75
Time (s)

0.275
0.300
0.325
0.350
0.375

z
(m

)

Desired Position z
Current Position z

(a)

0 25 50 75
Time (s)

-0.5
-0.4
-0.3
-0.2
-0.1

x
(m

)

Desired Position x
Current Position x

0 25 50 75
Time (s)

0.08

0.16

0.24

0.32

y
(m

)

Desired Position y
Current Position y

0 25 50 75
Time (s)

0.27
0.30
0.33
0.36

z
(m

)

Desired Position z
Current Position z

(b)
Fig. 20: (a) The motion of pF1

. (b) The motion of pF2
.

side to help both frames to go around obstacles. After moving around obstacles
slowly, both frames can quickly navigate to their destinations (Fig. 18e and
Fig. 18f). The final planned trajectory takes 92.15 s.

6 Conclusion
We present a new approach to online manipulation motion planning well suited
for reconfigurable modular robot systems. This approach formulates the motion
planning problem as a sequential quadratic program. We propose a novel way to
approximate obstacles in the environment considering both accuracy and sim-
plicity so that the obstacle-avoidance requirement can be modeled as a small
number of linear constraints. The objective function and constraints are up-
dated according to the current scenario in order to handle a larger range of
tasks. All motion constraints are linear that allows it to be applied to real-time
control. Multiple strongly coupled motion tasks can be handled easily which is
particularly useful for modular robots.

References
1. Agrawal, S.K., Kissner, L., Yim, M.: Joint solutions of many degrees-of-freedom

systems using dextrous workspaces. In: Proceedings 2001 ICRA. IEEE Interna-
tional Conference on Robotics and Automation (Cat. No.01CH37164). vol. 3, pp.
2480–2485 vol.3 (May 2001)

2. Amato, N.M., Wu, Y.: A randomized roadmap method for path and manipula-
tion planning. In: Proceedings of IEEE International Conference on Robotics and
Automation. vol. 1, pp. 113–120 vol.1 (April 1996)

3. Barraquand, J., Latombe, J.C.: Robot motion planning: A distributed represen-
tation approach. The International Journal of Robotics Research 10(6), 628–649
(1991)

QP Approach to Manipulation 23

4. Bradshaw, G., O’Sullivan, C.: Adaptive medial-axis approximation for sphere-tree
construction. ACM Trans. Graph. 23(1), 1–26 (jan 2004)

5. Brock, O., Khatib, O.: Elastic strips: A framework for motion generation in human
environments. The International Journal of Robotics Research 21(12), 1031–1052
(2002)

6. Coleman, D.T., Sucan, I.A., Chitta, S., Correll, N.: Reducing the barrier to entry
of complex robotic software: a MoveIt! case study. Journal of Software Engineering
for Robotics 5(4), 3–16 (May 2014)

7. Fromherz, M., Hogg, T., Shang, Y., Jackson, W.: Modular robot control and con-
tinuous constraint satisfaction. In: Proceedings of IJCAI Workshop on Modelling
and Solving Problems with Contraints. pp. 47–56. Seatle, WA (2001)

8. Furcy, D.A.: Speeding Up the Convergence of Online Heuristic Search and Scaling
Up Offline Heuristic Search. Ph.D. thesis, Georgia Institute of Technology, Atlanta,
GA (2004)

9. Giusti, A., Althoff, M.: Automatic centralized controller design for modular and
reconfigurable robot manipulators. In: 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). pp. 3268–3275 (Sep 2015)

10. Gurobi Optimization: Gurobi Optimizer, https://www.gurobi.com/products/
gurobi-optimizer/

11. Holmes, P., Kousik, S., Zhang, B., Raz, D., Barbalata, C., Roberson, M.J., Va-
sudevan, R.: Reachable sets for safe, real-time manipulator trajectory design. In:
Proceedings of Robotics: Science and Systems. Corvalis, Oregon, USA (July 2020)

12. Hsu, D., Latombe, J.., Motwani, R.: Path planning in expansive configuration
spaces. In: Proceedings of International Conference on Robotics and Automation.
vol. 3, pp. 2719–2726 vol.3 (April 1997)

13. Kalakrishnan, M., Chitta, S., Theodorou, E., Pastor, P., Schaal, S.: STOMP:
Stochastic trajectory optimization for motion planning. In: 2011 IEEE Interna-
tional Conference on Robotics and Automation. pp. 4569–4574 (May 2011)

14. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning.
The International Journal of Robotics Research 30(7), 846–894 (2011)

15. Kavraki, L.E., Svestka, P., Latombe, J.., Overmars, M.H.: Probabilistic roadmaps
for path planning in high-dimensional configuration spaces. IEEE Transactions on
Robotics and Automation 12(4), 566–580 (Aug 1996)

16. Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. The
International Journal of Robotics Research 5(1), 90–98 (1986)

17. LaValle, S.M., Kuffner, J.J.: Randomized kinodynamic planning. In: Proceed-
ings 1999 IEEE International Conference on Robotics and Automation (Cat.
No.99CH36288C). vol. 1, pp. 473–479 vol.1 (May 1999)

18. Likhachev, M., Gordon, G.J., Thrun, S.: ARA∗ : Anytime A∗ with provable bounds
on sub-optimality. In: Thrun, S., Saul, L., Schölkopf, B. (eds.) Advances in Neural
Information Processing Systems. vol. 16. MIT Press (2004)

19. Likhachev, M., Stentz, A.: R* search. In: Proceedings of the 23rd National Con-
ference on Artificial Intelligence - Volume 1. p. 344–350. AAAI’08, AAAI Press
(2008)

20. Liu, C., Whitzer, M., Yim, M.: A distributed reconfiguration planning algorithm
for modular robots. IEEE Robotics and Automation Letters 4(4), 4231–4238 (Oct
2019)

21. Liu, C., Yim, M.: A quadratic programming approach to modular robot control
and motion planning. In: 2020 Fourth IEEE International Conference on Robotic
Computing (IRC). pp. 1–8 (Nov 2020)

https://www.gurobi.com/products/gurobi-optimizer/
https://www.gurobi.com/products/gurobi-optimizer/

24 C. Liu et al.

22. Liu, C., Tosun, T., Yim, M.: A low-cost, highly customizable solution for position
estimation in modular robots. Journal of Mechanisms and Robotics (2021)

23. Liu, C., Yim, M.: Configuration recognition with distributed information for mod-
ular robots. In: IFRR International Symposium on Robotics Research (ISRR).
Puerto Varas, Chile (Dec 2017)

24. Liu, G., Abdul, S., Goldenberg, A.A.: Distributed control of modular and recon-
figurable robot with torque sensing. Robotica 26(1), 75–84 (2008)

25. Melek, W.W., Goldenberg, A.A.: Neurofuzzy control of modular and reconfigurable
robots. IEEE/ASME Transactions on Mechatronics 8(3), 381–389 (Sep 2003)

26. Murry, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manip-
ulation. CRC Press (1994)

27. Park, C., Pan, J., Manocha, D.: ITOMP: Incremental trajectory optimization for
real-time replanning in dynamic environments. In: Proceedings of the Twenty-
Second International Conference on International Conference on Automated Plan-
ning and Scheduling. pp. 207–215. ICAPS’12, AAAI Press (2012)

28. Quinlan, S., Khatib, O.: Elastic bands: connecting path planning and control. In:
[1993] Proceedings IEEE International Conference on Robotics and Automation.
pp. 802–807 vol.2 (May 1993)

29. Ratliff, N., Zucker, M., Bagnell, J.A., Srinivasa, S.: CHOMP: Gradient optimization
techniques for efficient motion planning. In: 2009 IEEE International Conference
on Robotics and Automation. pp. 489–494 (May 2009)

30. Rimon, E., Koditschek, D.E.: Exact robot navigation using cost functions: the case
of distinct spherical boundaries in En. In: Proceedings. 1988 IEEE International
Conference on Robotics and Automation. pp. 1791–1796 vol.3 (April 1988)

31. Schouwenaars, T., De Moor, B., Feron, E., How, J.: Mixed integer programming
for multi-vehicle path planning. In: 2001 European Control Conference (ECC). pp.
2603–2608 (Sep 2001)

32. Schulman, J., Duan, Y., Ho, J., Lee, A., Awwal, I., Bradlow, H., Pan, J., Patil, S.,
Goldberg, K., Abbeel, P.: Motion planning with sequential convex optimization and
convex collision checking. The International Journal of Robotics Research 33(9),
1251–1270 (2014)

33. Seo, J., Yim, M., Kumar, V.: A theory on grasping objects using effectors with
curved contact surfaces and its application to whole-arm grasping. The Interna-
tional Journal of Robotics Research 35(9), 1080–1102 (2016)

34. Shankar, K., Burdick, J.W., Hudson, N.H.: A Quadratic Programming Approach
to Quasi-Static Whole-Body Manipulation, pp. 553–570. Springer International
Publishing, Cham (2015)

35. Shiller, Z., Dubowsky, S.: On computing the global time-optimal motions of robotic
manipulators in the presence of obstacles. IEEE Transactions on Robotics and
Automation 7(6), 785–797 (Dec 1991)

36. Tosun, T., Edgar, D., Liu, C., Tsabedze, T., Yim, M.: PaintPots: Low cost, accu-
rate, highly customizable potentiometers for position sensing. In: 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA). pp. 1212–1218 (May
2017)

37. Yim, M., Duff, D.G., Roufas, K.D.: PolyBot: a modular reconfigurable robot. In:
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference
on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). vol. 1,
pp. 514–520 vol.1 (April 2000)

38. Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E.,
Chirikjian, G.S.: Modular self-reconfigurable robot systems [grand challenges of
robotics]. IEEE Robotics Automation Magazine 14(1), 43–52 (March 2007)

QP Approach to Manipulation 25

39. Yim, M., White, P., Park, M., Sastra, J.: Modular self-reconfigurable robots. In:
Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 5618–
5631. Springer New York, New York, NY (2009)

40. Zhao, Y., Lin, H., Tomizuka, M.: Efficient trajectory optimization for robot motion
planning. In: 2018 15th International Conference on Control, Automation, Robotics
and Vision (ICARCV). pp. 260–265 (Nov 2018)

41. Zhu, W., Lamarche, T., Dupuis, E., Jameux, D., Barnard, P., Liu, G.: Precision
control of modular robot manipulators: The VDC approach with embedded FPGA.
IEEE Transactions on Robotics 29(5), 1162–1179 (Oct 2013)

42. Zucker, M., Ratliff, N., Dragan, A.D., Pivtoraiko, M., Klingensmith, M., Dellin,
C.M., Bagnell, J.A., Srinivasa, S.S.: CHOMP: Covariant hamiltonian optimization
for motion planning. The International Journal of Robotics Research 32(9-10),
1164–1193 (2013)

	A Quadratic Programming Approach to Manipulationin Real-Time Using Modular Robots

