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Abstract—Modular robotic systems consist of multiple modules
that can be transformed into different configurations with respect
to different needs. Different from robots with fixed geometry
or configurations, the kinematics model of a modular robotic
system can alter as the robot reconfigures itself. Since modular
robotic systems are usually highly redundant for versatility,
developing a generic approach for control and motion planning
is difficult, especially when multiple motion goals are coupled.
A new framework in terms of control and motion planning is
developed. The problem is formulated as a linearly constrained
quadratic program (QP) that can be solved efficiently. Some
constraints can be incorporated into this QP, including a novel
way to approximate environment obstacles. This solution can be
used directly for real-time applications and it is validated and
demonstrated on the CKBot and SMORES-EP modular robot
platforms.

I. INTRODUCTION

Modular self-reconfigurable robot systems are usually com-
posed of a small set of building blocks with uniform docking
interfaces that allow the transfer of mechanical forces and
moments, electrical power, and communication throughout
the robot [1]. These platforms are designed to be versatile
and adaptable with respect to different tasks, environments,
functions or activities.

A single module in a modular robotic system usually has
one or more degrees of freedom (DoFs). Combining many
modules to form versatile systems results in robots requir-
ing representations with high dimension. This dimensionality
makes control and motion planning difficult. That the system
is not a single structure but can take a very large number
of configurations (typically exponential in the number of
modules) requires an approach that can be applied to arbitrary
configurations. For example, a modular robot configuration
built by PolyBot [2] modules is shown in Fig. 1 which
has multiple serial kinematic chains. This is different from
common multi-limb systems with a single base. These systems
can be modeled such that chains are decoupled. However,
in chain-type modular robotic systems the chains often share
many DoFs leading to a more complicated control problem.

In this paper, we present a new approach for modular
robotic systems in terms of control and motion planning. In

Fig. 1: A modular robot configuration built by PolyBot mod-
ules is composed of multiple chains [2].

order to solve the problem in general, an universal kinematics
model is required for arbitrary configurations and the approach
is meant to be easily extended for more motion goals. We
propose a quadratic programming approach that can be solved
efficiently for real-time application. This requires that system
stability, hardware limits, and motion constraints can be incor-
porated into this quadratic program (QP) as linear constraints.
One advantage of this approach is that the large variety of
configurations and kinematic structures can be represented
easily as linear constraints, including situations where multiple
portions of the robot may have different simultaneous goals.
The framework is tested and evaluated on CKBot [3] and
SMORES-EP [4] in the end.

The paper is organized as follows. Sec. II reviews relevant
and previous works. Sec. III introduces the details to derive
the kinematics model required to describe the motion of any
modular robotic configuration. Sec. IV discusses the approach
to control and motion planning for given tasks. Some exper-
iments are validated in Sec. V with some analysis. Sec. VI
includes the conclusions and future work.

II. RELATED WORK

There are a variety of methods for control and motion plan-
ning in locomotion with modular robots, e.g. [5] [6]. Whereas
locomotion gaits usually feature repeated actions, manipula-
tion typically focuses on the precise control of the end-effector.
Motion planning for variable topology truss systems is pre-
sented in [7] but these robots are in a different morphology.
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This paper addresses the manipulation and shape-morphing
tasks for modular robots in tree topologies that are constructed
from multiple serial chain configurations, and is particularly
advantageous where some DoFs are shared among several
branches. Work related to manipulation of modular robot
systems includes inverse kinematics for highly redundant chain
using PolyBot [2] [8], and constrained optimization techniques
with nonlinear constraints [9]. Due to complicated constraints
in these approaches, real-time applications for large systems
cannot be guaranteed and numerical issue have to be addressed
when solving the optimization problem in the presence of
obstacles. Some quadratic programming approaches have been
presented to deal with the inverse kinematics problem for re-
dundant manipulators [10] considering joint limit constraints,
and whole body manipulation planning [11] [12] with complex
models for collision check requiring iterative computation.
Our work also differs from [12] in how the motion goals are
incorporated into the objective functions. In [12] the goals are
in the objective function along with the weighted 2-norm of all
joint velocities. However, there is no guarantee on the tracking
performance because the magnitude of each part in the objec-
tive function can be different. Another part of works related are
about controller design for modular robots, such as an adaptive
control approach using a neural network architecture [13],
a virtual decomposition control approach [14], a distributed
control method with torque sensing [15], and a centralized
controller [16]. These approaches only consider the control
problem in a free environment and extra motion planning is
required to fully control the system in a complex environment.
Sampling-based planning approaches have been shown to be
effective for high dimensional problem [17] [18] but tend to
be slow and hard to integrate with motion constraints.

A new approach is presented in this paper to solve this
problem. A more general solution to build kinematics models
of modular robotic systems is introduced. Then the motion
planning and control problem can be formulated as a linearly
constrained quadratic program (QP) that can be solved effi-
ciently for real-time applications.

III. KINEMATICS FOR MODULAR ROBOTS

A. Kinematics Graph

The representation of a modular robot configuration is
discussed in [19] which is an undirected graph G = (V,E).
Each vertex v ∈ V represents a module and each edge e ∈ E
represents the connection between two modules.

We use a module graph to model a module’s topology
among its all connectors and joints. A module graph is a
directed graph Gm = (Vm, Em): each vertex is a rigid body
in the module which is either a connector or the module
body, and each edge shows how two adjacent rigid bodies
are connected. The transformations among all rigid bodies
are determined by its joint set and geometry. For example,
a CKBot UBar module in Fig. 2a is a one DoF module as
well as four connectors (TOP Face or T , BOTTOM Face or
B, LEFT Face or L, and RIGHT Face or R). For simplicity,
when the module joint is in its zero position, all rigid bodies
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Fig. 2: (a) A CKBot UBar module has one DoF and four
connectors; (b) A CKBot CR module has one DoF and six
connectors.

(a) (b)

Fig. 3: (a) Module graph of a CKBot UBar module in which
gMB, gBM, gML, gLM, gMR, and gRM are invariant of
θ, and (b) module graph of a CKBot CR module in which
gMBa , gBaM, gMBt , gBtM, gMT , gTM, gML, gLM, gMR,
and gRM are invariant of θ.

are in the same orientation and the translation offsets among
them are determined by the module geometry. Let B be fixed in
M, then the homogeneous transformations amongM, L, and
R are invariant of joint parameter θ because they are rigidly
connected. Only the homogeneous transformation betweenM
and T is not invariant to θ. This relationship can be fully
represented in a directed graph shown in 3a. The edge direction
denotes the direction of the corresponding forward kinematics.
Gm is the set of unique module graphs Gm for a modular
robotic system since some systems have more than one type
of module (e.g. CKBot in Fig. 2).

In general, given a module m with connector set C and
joint set Θ, a frame C is attached to each connector c ∈ C
and frame M is attached to the module body. Let mapping
gF1F2

: Q→ SE(3) describe the forward kinematics from F1

to F2 in joint space Q, then ∀c ∈ C, gMC and gCM can be
defined with respect to Θ. The results for CKBot CR modules
and SMORES modules are shown in Fig. 3b and Fig. 4. With
module graph model, we can easily obtain the kinematics
graph GK = (VK , EK) for a modular robot configuration
which is constructed by composing the modules by connecting
connectors. A directed edge is used to denote each connection
and the transformation between the two mating connectors is
fixed since they are rigidly connected. Using this kinematics
graph, a kinematics chain from frame F1 to frame F2 can
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Fig. 4: (a) A SMORES-EP module has four DoFs and four
connectors; (b) The frames of all rigid bodies are shown and
B is fixed in M; (c) Module graph of a SMORES module in
which gMB and gBM are invariant of Θ = (θl, θr, θp, θt).
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Fig. 5: (a) A configuration by two CKBot UBar modules, (b)
its kinematics graph model, and (c) kinematics chain from W
to T2.

be derived by following the shortest path GK : F1  F2.
This creates a graph with no loops. A simple configuration
built by two CKBot UBar modules is shown in Fig. 5. Frame
W is the world frame and module m1 is fixed to it via its
BOTTOM Face. The kinematics graph is shown in Fig. 5b and
the kinematics chain from W to T2 can be obtained shown in
Fig. 5c. All the edges have fixed homogeneous transformations
except for edge (M1, T1) and edge (M2, T2), and we can
conclude that the forward kinematics mapping is gWT2 : T2 →
SE(3) where Tp represents the p-torus. However, we can also
see that all the edges in the shortest path from W to L1 have
fixed homogeneous transformations, so L1 is fixed in W .

Similar to the configuration discovery algorithm in [19], the
kinematics graph can be built by visiting modules in breadth-
first-search order. The given configuration is traversed from
the module fixed to the world frame W . When visiting a new
module m, denoting its parent via its connector c as m̃ and
the mating connector of m̃ as c̃, record the fixed homogeneous
transformation gCC̃ in which frame C and frame C̃ are attached
to c and c̃ respectively. Not until all modules are visited, is
the GK = (VK , EK) of the given configuration constructed.
With this structure, there is no need for case-by-case derivation
of the kinematics as long as the kinematics for each type of
module and connection are defined.

B. Kinematics for Modules

Recall that given a module m with connector set C and
joint set Θ, a frame C is attached to each connector c ∈ C
and frame M is attached to the module body. For a joint
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Fig. 6: (a) Kinematics for SMORES modules and (b) — (e)
four cases to connect R and T .

θ ∈ Θ, a twist ξ̂θ ∈ se(3) can be defined with respect to
M in which ξθ = (vθ, ωθ) ∈ R6 is the twist coordinates for
ξ̂θ

1 , and ξ is the set of the twist associated with each joint.
For homogeneous transformation gMC , it is straightforward to
have

gMC = gMC(Θ
C) =

∏

i

exp(ξ̂ΘC
i
ΘCi ) gMC(0) (1)

in which ΘC denote the parameter vector in joint space of the
kinematics chain from M to C . If no joints are involved in
the kinematics chain from M to C, then C is fixed in M and
gMC is a constant determined by the geometry of the module.
gCM is just the inverse of gMC .

C. Kinematics for Chains

A kinematics chain from frame S to F can be obtained
as GK : S  F where S and F are two vertices of
GK . In this kinematics chain, all the homogeneous trans-
formations between connectors (e.g. gT1B2

in Fig. 5c) are
fixed and can be easily computed. The relative orientation
between connectors needs considered that is determined by
the connector design. For example, there are four cases to
connect SMORES-EP modules shown in Fig. 6b — Fig. 6e
due to the ring arrangement of the magnets on the connector.
Then the homogeneous transformation gSF can be computed
by multiplying the homogeneous transformation of each edge
of path GK : S  F in order. In particular, let S be world
frame W , if module m1,m2, · · · ,mN are involved in this
chain, then the position of the origin of F in W is given by

pWF = gWF
[

0 0 0 1
]ᵀ

(2)

then the instantaneous spatial velocity of F is given by the
twist

V̂ sWF =
N∑

i=1

Ni∑

j=1

(
∂gWF
∂θij

g−1
WF )θ̇ij (3)

in which θij is the jth joint parameter of module mi involved
in this chain and the number of joints of module mi involved
in this chain is Ni. Rewrite Eq. (3) in twist coordinates as

V sWF = JsWF Θ̇WF (4)

1Refer to [20] for background



in which

ΘWF = [θ11 · · · θ1N1
θ21 · · · θ2N1

· · · θN1 · · · θNNn ]
ᵀ (5)

JsWF =
[
J1 J2 · · · JN

]
(6)

Ji =
[

(∂gWF
∂θi1

g−1
WF )∨ (∂gWF

∂θi2
g−1
WF )∨ · · · (∂gWF

∂θiNi
g−1
WF )∨

]

(7)

and JsWF is the spatial chain Jacobian.
Define the twist of jth joint of module mi with respect to

W as ξ′ij that is

ξ′ij = (
∂gWF
∂θij

g−1
WF )∨ = AdgWMi

ξij

in which AdgWMi
is the adjoint transformation2 and ξij is

defined in Sec. III-B for each joint in a module with respect
to its module body frame. Then Ji becomes

Ji =
[
ξ′i1 ξ′i2 · · · ξ′iNi

]
(8)

With this spatial chain Jacobian, the velocity of the origin of
the frame F is

vsF = V̂ sWFp
W
F = (JsWF Θ̇WF )

∧
pWF (9)

For a module mi in the kinematics chain GK : W  F
(Mi is a vertex in the corresponding path), a sub-kinematics
chain GK : W  Mi can be defined with joint parameter
vector ΘWMi =

[
θ11, θ12, · · · , θīj̄i

]ᵀ
where θīj̄i is the pa-

rameter of j̄ith joint of module mī. For example, take the
sub-kinematics chain from W to M2 in Fig. 5c, then i = 2,
ī = 1, j̄i = 1, since there is only one joint between W and
M2 which is the 1st joint of module m1. Then the spatial
module Jacobian JsWMi

or JsMi
for simplicity can be defined

as
JsMi

=
[
ξ′11 ξ′12 · · · ξ′

īj̄i

]
(10)

and the velocity of the origin of Mi is

vsMi
= (JsMi

Θ̇WMi)∧pWMi
(11)

By replacing all the twists associated with joints after j̄ith
joint of module mī in the spatial chain Jacobian of chain GK :
W  F with 6× 1 zero vectors, spatial module Jacobian can
also be written as

JsMi
=
[
ξ′11 ξ′12 · · · ξ′

īj̄i
06×1 · · · 06×1

]
(12)

then the velocity of the origin of Mi is represented as

vsMi
= (JsMi

Θ̇WF )∧pWMi
(13)

IV. CONTROL AND MOTION PLANNING

A. Control

Given the kinematics chain GK : W  F , the goal of
the control task is to move pWF (or pF for simplicity) — the
position of F — to follow a desired trajectory.

2Refer to Chapter 2 in [20] for adjoint transformation definition

Let p̃F = p̃F (t) be the desired trajectory for the robot to
track and ṽsF (or ṽF for simplicity) is the derivative of p̃F ,
and the error and its derivative are defined as

e = p̃F − pF ė = ˙̃pF − ṗF = ṽF − vF
The error e can converge exponentially to zero as long as it
satisfies

ė+Ke = 0 (14)

in which K is positive definite. Substitute e and ė

ṽsF − vsF +K(p̃F − pF ) = 0 (15)

With Eq. (9), Eq. (15) can be rewritten as

(JsWF Θ̇WF )
∧
pF = ṽsF +K(p̃F − pF ) (16)

Eq. (16) is the control law to control the position of frame F ,
namely Θ̇WF (or Θ̇F for simplicity) — the velocity of each
involved joints that satisfies this equation — can move pF to
p̃F in exponential time.

Suppose there are α motion goals p̃F1 , p̃F2 , · · · , p̃Fα , then
the control law for all motion goals can be written as

JP = Ṽ + K(P̃−P) (17)

which is the stack of Eq. (16) for each motion goal. This makes
the control problem for multiple motion goals easier without
considering the fact that some motion goals may be coupled,
that is some kinematic chains share DoFs. All we have to do
is to build Eq. (16) for each individual motion goal and then
stack them as linear constraints. Building a specific model for
different combinations of motion goals is not necessary.

Recall that a modular robotic system is usually redundant
so that there can be infinite number of solutions to Eq. (17)
and this problem is formulated as a quadratic program

minimize
1

2
Θ̇ᵀΘ̇

subject to JP = Ṽ + K(P̃−P)
(18)

where Θ is the set of joint parameters in kinematics chains
GK : W  F1, GK : W  F2, · · · , GK : W  Fα.
Then solving (18) yields the minimum norm solution of joint
velocities at every moment .

Joint position and velocity limits can be added to the
quadratic program as inequality constraints

Θmin −Θ

∆t
≤ Θ̇ ≤ Θmax −Θ

∆t
(19)

Θ̇min ≤ Θ̇ ≤ Θ̇max (20)

in which ∆t is the time duration for the current step. Due
to these two constraints, K cannot be too aggressive or there
may not be solutions.

This optimization approach is helpful for many types of
motion task. The controller can be used to move pF to a
desired position p̃F by setting ṽsF = 0, and it can also control
pF to move at a desired velocity by increasing p̃F by ṽF∆t
for every time step.



B. Motion Planning

The goal of the motion planning task is to enable a cluster
of modules to navigate collision-free in an environment with
obstacles.

1) Frame Boundaries: The cluster of modules can be kept
in any polyhedral region in space which is defined by the
boundaries of the environment. For a module mi in the
kinematics chain GK : W  F , let ŝij be the unit direction
vector from pWMi

(or pMi for simplicity) — the origin of
Mi in world frame W — to the jth face of the environment
polyhedron perpendicular with distance dij , then if we enforce
the constraint

vsMi
• ŝij = (JsMi

Θ̇)∧pMi
• ŝij ≤ dij (21)

for every side of the environment polyhedron, pMi
will

never cross the boundary of the environment as long as this
kinematics chain follows the velocity for much less than 1
second. Using a sphere with radius ri to approximate the
geometry size of module mi, then the constraint

vsMi
• ŝij = (JsMi

Θ̇)∧pMi
• ŝij ≤ dij − ri (22)

will ensure that the module body will always be inside the en-
vironment boundaries (Fig. 7a). Thus, applying constraint (22)
to all modules in the kinematics chain will ensure the chain
will stay inside the environment.

2) Obstacle Avoidance: It is hard to represent the collision-
free space analytically in joint space due to the high-DoF
of modular robotic systems. Here we propose an alternative.
The obstacles can be approximated by a set of spheres using
a sphere-tree construction algorithm [21]. Similar ideas have
been explored in [9] and [22] which model this constraint as
the distance between every sphere approximating the robot and
every sphere approximating the obstacles. These constraints
are not suitable for real-time applications of large systems
due to numerical issues. In this paper, the obstacle avoidance
requirement is modeled as linear constraints which are efficient
to solve stably. For a module mi in the kinematics chain
GK : W  F , let s̃ij be the unit direction vector from pMi

to the center of the jth obstacle sphere oj in world frame W
with radius roj . Imaging a plane with s̃ij as its normal vector
and o′j being the point of tangency to this sphere, then if we
enforce the constraint

vsMi
• s̃ij = (JsMi

Θ̇)∧pMi • s̃ij ≤ ‖o′j − pMi‖ − ri (23)

(a) (b)

Fig. 7: (a) Environment boundary and (b) sphere obstacle
avoidance.

in which o′j = oj − roj sij for every obstacle sphere, pMi

will never touch an obstacle (Fig. 7b).3 In order to enable the
system to safely navigate the environment, we can apply this
constraint for every module.

C. Integrated Control and Motion Planning

With the control law in Sec. IV-A and motion constraints in
Sec. IV-B, we can formalize the control and motion planning
problem for multiple kinematics chains GK : W  Fi
i = 1, 2, · · · , α as the following quadratic program with linear
constraints

minimize
1

2
Θ̇ᵀΘ̇

subject to JP = Ṽ + K(P̃−P)

Θmin −Θ

∆t
≤ Θ̇ ≤ Θmax −Θ

∆t
Θ̇min ≤ Θ̇ ≤ Θ̇max

(JsMi
Θ̇)∧pMi

• ŝij ≤ dij − ri
∀(Mi, fj) ∈ VK × F

(JsMi
Θ̇)∧pMi

• s̃ik ≥ ri + rok

∀(Mi, Sk) ∈ VK × S

(24)

in which F is the set of all faces of environment polyhedron
and fj is the jth face, and S is the set of all spheres
approximating the environment obstacles and Sk is the kth
sphere in S. By solving this quadratic program, the mini-
mum norm solution that satisfies the hardware limits, control
requirement, and motion constraints can be obtained for the
current time step given the current state of every kinematics
chain GK : W  Fi i = 1, 2, · · · , α, the desired velocity,
and the position of the origin of each frame Fi.

D. Iterative Algorithm for Modular Robots

The set of module graph Gm described in Sec. III-A and
the twist set ξ described in III-B associated with all the joints
in different type of modules are computed and stored. For a
modular robot configuration G, assuming the base module m̄
and how it is attached to the world frame W as well as the
motion goals p̃F1 , p̃F2 , · · · , p̃Fα for frame F1, F2, · · · , Fα
respectively are known, the set of all faces of the environment
polyhedron is F and the set of all spheres approximating
environmental obstacles is S, the full algorithm framework
is shown in Algorithm 1 with following functions:
• BFS (G,Gm, m̄): Traverse a modular robotic configura-

tion G in breadth-first-search order starting from m̄ to
construct the kinematics graph GK = (VK , EK);

• GetChain(GK ,F): Return the kinematics chain fromW
to F in GK ;

• SolveQP(GK ,F1,F2, · · · ,Fα, P̃(t), Ṽ(t),P,K,∆t):
Construct and try to solve the quadratic program
described in Eq. (24). If failed to solve this program,
then return Null as an invalid solution.

3This is a correction of the published conference paper on IEEE Xplore.



Algorithm 1: Control and Motion Planning
Input: ξ, Gm, m̄, F1, F2, · · · , Fα,

{p̃Fi(t)|0 ≤ t ≤ T, i = 1, 2, · · · , α}, F , S
Output: result

1 GK = BFS (G,Gm, m̄);
2 GK :W  Fi = GetChain(GK ,Fi), i ∈ [1, α];
3 Initialize Θ;
4 Initialize K and ∆t;
5 t← 0;

6 while
α∑
i=1

‖pFi − p̃Fi(T )‖ ≥ ε do

7 Compute ŝij ∀(Mi, fj) ∈ VK × F ;
8 Compute s̃ik ∀(Mi, Sk) ∈ VK × S;
9 Θ̇ = SolveQP(GK ,F1,F2, · · · ,Fα,

P̃(t), Ṽ(t),P,K,∆t);
10 if Θ̇ = Null then
11 return result ← False;
12 end
13 Publish Θ̇ to the system;
14 t← t+ ∆t;
15 end
16 return result ← True;

After initializing all the parameters, compute the unit direc-
tion vector ŝij between every Mi ∈ VK and every face of
the environment fj ∈ F , and also compute the unit direction
vector s̃ik between everyMi ∈ VK and every obstacle sphere
Sk ∈ S. If there is no valid solution, the program should
stop, or the program will continue until pF is close enough to
the destination p̃F (T ). If the trajectory p̃F (t) is not specified
and only p̃F (T ) where T → ∞ is given, then this algorithm
can automatically find a path for modules to navigate the
environment.

V. EXPERIMENTS

The approach is verified by a couple of experiments. We
first show that the framework is able to execute a motion
task with guaranteed tracking and navigation performance,
frame boundary constraint, and obstacle avoidance. Then the
framework is validated on SMORES-EP which has more DoFs
to show its universality. At last, a motion task with two chains
involved is executed with our framework.

1) CKBot Chain: A configuration with four CKBot UBar
modules is built in Fig. 8a. The base module m̄ = m1 is
attached to the world frameW and F is attached to connector
T of module m4. A virtual frame boundary is next to the right
side of the base. The task is to control pF to follow a given
trajectory to the position shown in Fig. 8d. Another experiment
setup with five CKBot UBar modules is shown in Fig. 9a.
The black sphere is an obstacle, the base module m̄ = m1

and frame F is attached to connector T of module m5. Two
tasks are executed: control pF to follow a given trajectory and
control pF to approach a specified destination with the final
position of pF as shown in Fig. 9d. The control loop runs

(a) (b)

(c) (d)

Fig. 8: Control pF to follow a given trajectory along +y-axis
of W by 15 cm from initial pose (a) to final pose (d): All the
modules have to be on the left side of the boundary. m1, m2,
and m3 have to approach the boundary first (b) and then move
away from the boundary (c) to finish the task.

(a) (b)

(c) (d)

Fig. 9: Control pF from its initial pose (a) to its final pose (d)
by both following a given trajectory along +y-axis of W by
15 cm and navigating to the destination directly. The modules
have to move around the sphere obstacle while executing these
two tasks.
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Fig. 10: The motion of pF for (a) the four-module task and
(b) the five-module trajectory following task.
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Fig. 11: The control input Θ̇ for five-module chain experiment:
(a) trajectory following task and (b) destination navigation
task.

at 20 Hz with gain K = diag(1, 1, 1). Fig. 10 and Fig. 12a
shows pF (t) and p̃F of these three tests which demonstrates
tracking and navigation performance. The velocity commands
for all modules in these two five-module demonstrations are
shown in Fig. 11 and all commands are within the limitation
of each module. Modules moves more aggressively at the
beginning when executing destination navigation task in order
to approach the destination as soon as possible.

2) SMORES Chain: The experiment setup with four
SMORES-EP modules is shown in Fig. 13a. The base module
m̄ = m1 is fixed to the world frame W and frame F is
attached to connector T of module m4. This system has
16 DoFs and the task is to control pF to navigate to a
specified destination shown in Fig. 13b. The control loop is
running at 20 Hz and the gain K = diag(0.5, 0.5, 0.5). The
experiment result pF (t) is shown in Fig. 12b. The position
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Fig. 12: The motion of pF for (a) the CKBot five-module
destination navigation task and (b) the SMORES-EP four-
module chain destination navigation task.

(a) (b)

Fig. 13: Control a chain of SMORES-EP modules to navigate
from its initial position (a) to a goal position (b). This chain
is constructed by four modules with 16 DoFs.

sensors installed in SMORES-EP modules are customizable
potentiometers using paints [23]. These low-cost sensors with
a modified Kalman filter for nonlinear systems are used to pro-
vide position information of each DoF. Due to the limitations
of the hardware, there are some noise in this experiment.

3) CKBot Branch: A configuration with nine CKBot UBar
modules is shown in Fig. 14a. The base module m̄ = m1 is
fixed to the world frameW . Frame F1 is attached to connector
T of module m6 and frame F2 is attached to connector T of
module m9. Chain GK : W  F1 and GK : W  F2 have
common parts composed by module m1, m2, and m3. The task
is to control pF1 and pF2 to follow trajectories respectively
to the pose shown in Fig. 14d. The control loop is running at
20 Hz and the gain is diag(0.1, 0.1, 0.1) for both motion goals.
The tracking performance is shown in Fig. 15a and Fig. 15b.

VI. CONCLUSION

A new approach to simultaneous control and motion plan-
ning for arbitrary configurations of modular robots based on
an autonomous kinematics modeling method is presented in
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Fig. 14: Control pF1
and pF2

to follow two given trajectories
respectively from initial pose (a) to final pose (d). Module
m1, m2, and m3 initially have to move backward (b) and then
move forward (c) in order to control pF1

and pF2
to follow

their trajectories.
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Fig. 15: (a) Tracking result for pF1 and (b) tracking result for
pF2 .

this paper. The control requirement and the motion planning
constraints can be incorporated into a linearly constrained
quadratic programming problem that can be solved efficiently.
Multiple strongly coupled motion goals can be handled easily
and some hardware demonstration and experiment results are
provided. Future work includes objective functions exploration
for different tasks and dynamics constraints for the system.
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