
A Fast Configuration Space Algorithm for Variable Topology Truss
Modular Robots

Chao Liu, Sencheng Yu, and Mark Yim

Abstract— The Variable Topology Truss (VTT) is a new
class of self-reconfigurable robot that can reconfigure its truss
shape and topology depending on the task or environment
requirements. Motion planning and avoiding self-collision are
difficult as these systems usually have dozens of degrees-of-
freedom with complex intersecting parallel actuation. There
are two different types of shape changing actions for a VTT:
geometry reconfiguration and topology reconfiguration. This
paper focuses on the geometry reconfiguration actions. A new
cell decomposition approach is presented based on a fast and
complete method to compute the collision-free space of a node
in a truss. A simple shape-morphing method is shown to quickly
create motion paths for reconfiguration by moving one node at
a time.

I. INTRODUCTION

Self-reconfigurable modular robots are usually composed
of many repeated robot elements or modules. Modules
can connect with each other to construct or reconfigure
themselves into large structures depending on the tasks,
environments or robot states [1]. More and more modular
robotic systems have been developed in recent years, such
as M-Blocks [2], PolyBot [3], Roombots [4] and SMORES-
EP [5]. These modular robots are often roughly cubic or
spheroidally shaped and modules occupy cells in a lattice
nominally or form one or multiple chains for locomotion or
manipulation. A newer type of modular robotic systems is
composed of prismatic joints as truss members commonly
called the variable geometry truss (VGT) [6] and includes
TETROBOT [7] and Odin [8]. The variable topology truss
(VTT) is similar to the variable geometry truss with addi-
tional capability to self-reconfigure its connection between
members altering the truss topology. Hence, the variable
topology truss system has both the efficiency benefits of
VGTs and the flexibility of self-reconfigurable robots [9].

As a modular robotic system, a variable topology truss is
capable of adapting itself into different configurations with
respect to different requirements. For a VTT system, its
configuration can be fully defined by the set of truss member
link lengths and their node assignments at which point truss
members are joined. Different configurations are best suited
for different objectives, for example, a variable topology truss
in cubic configuration can move around by dynamic rolling,
while a configuration in a walker configuration with four
legs can explore an environment by walking. There are also

This work was sponsored by AFOSR grant FA2386-17-1-4656
The authors are with GRASP Lab and Department of Mechan-

ical Engineering and Applied Mechanics, University of Pennsylva-
nia, Philadelphia, PA 19104, USA chaoliu@seas.upenn.edu,
schyu@seas.upenn.edu, yim@seas.upenn.edu

some configurations with large reachable workspace which
are good at manipulation while some are better applied for
shoring buildings or structures in disaster scenarios.

There are two different types of reconfiguration mo-
tion: geometry reconfiguration and topology reconfiguration.
Geometry reconfiguration involves changing the length of
member modules in a variable topology truss resulting in
the motion of corresponding nodes. Topology reconfigu-
ration involves changing the connectivity among members
(changing their node assignments). In general, any topology
reconfiguration also requires geometry reconfiguration in
order to enable the connectivity changes.

A variable topology truss is composed of multiple edge
modules which include a linear actuator as the truss member
plus the two ends of the member that attach or detach from
other ends to form the node [10]. A node is constructed by
multiple ends of members by a linkage system with a passive
rotational degree-of-freedom (DOF). The node assignments
of every member define the topology and the length of every
member defines the shape [11].

To be a reconfigurable variable topology truss, there are
some constraints on the arrangement of members, including
that a VTT has to be a rigid structure to maintain its
shape and be statically determinant. In general, a node in
a VTT needs at least three members attached to ensure
its controllability. In addition, topology-reconfigurable VTT
systems require at least 18 members to reconfigure [10]
which means they have at least 18 actuated DOF. Thus,
motion planning for these systems involves at least 18 and
typically more than 21 dimensions. In addition, members
forming VTT structure typically span the workspace in a
very non-uniform manner as the truss configuration creates
a complicated configuration space. Different from common
open chain kinematic structures, it is much easier to solve
inverse kinematics problem than to solve forward kinematics
for parallel robots. Thus, rather than planning the motion
of the VTT shape from the member lengths, we solve the
shape morphing problem by finding feasible paths for all
involved nodes and determine the required member lengths
afterward. In addition, multiple nodes in a VTT are usually
strongly coupled in the space, namely moving one node
can significantly affect the configuration space and obstacle
region of other nodes. We relax this constraint by moving
one node (3 DOFs) at a time resulting in longer execution
times compared to having all DOFs move at the same time.
But the advantage is that this very high-dimensional planning
problem is converted into multiple 3D problems which is
feasible to be solved by graph search algorithm rather than

This accepted article to ICRA 2020 is made available by the authors in compliance with IEEE policy.
Please find the final, published version in IEEE Xplore, DOI: 10.1109/ICRA40945.2020.9196880.

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/9196880

using high DOF search algorithms such as Rapidly-exploring
Random Trees (RRT). In this way, the multi-node planning
problem can be significantly simplified. However, a new
challenge is to do cell decomposition in such a way that
graph search algorithms can be applied efficiently.

In this paper, a fast and complete approach to compute the
obstacle region and the free space of a node in a variable
topology truss is presented. The free space can be divided
into multiple convex polyhedrons in which the corresponding
node can move freely without considering collision. Then a
simple graph search algorithm can be used to plan a path for
this node efficiently.

The rest of the paper is organized as follows. Sec. II
reviews relevant and previous works. Sec. III introduces the
fast and complete geometry reconfiguration algorithm for a
single node. Sec. IV presents the shape morphing approach
with multiple nodes involved. Some applications and analysis
are shown in Sec. V to demonstrate the effectiveness of the
algorithm. Finally, Sec. VI talks about the conclusion and
future work.

II. RELATED WORK

Reconfiguration planning for self-reconfigurable robots
have been developed for a variety of modular robotic
systems, such as PolyBot [12], Crystal robot [13] and
SMORES [5]. These algorithms work for traditional lattice-
type, chain-type or mobile-type reconfiguration systems, but
are not applicable to VTT systems which present very
different physical constraints to the problem.

The variable topology truss systems were presented
in [10], including the concept, hardware design and some
basic analysis. To handle the high dimensional problem,
sampling-based planning techniques were used in [9] to do
geometry reconfiguration planning and a retraction-based
RRT was developed for narrow passage problem, a well-
known issue in sampling-based planning approaches. How-
ever, sometimes waypoints still need to be manually assigned
to fully solve the shape morphing problem.

Kinematic control for TETROBOT was introduced in [7]
but was limited to tetrahedrons or octahedrons. Linear actua-
tor robots (LARs) are made up of linear actuators connected
at universal joints into a network and a corresponding shape
morphing algorithm was presented in [14]. Since these robots
are in mesh graph topology constructed by multiple convex
hulls, self-collision can be avoided easily. But this is not
applicable to variable topology truss systems because they
can be in any configurations rather than just mesh graph
topology and the self-collision is the primary cause for
complication in VTTs.

A new reconfiguration planning algorithm for variable
topology truss systems was presented in [11]. This work
combined topology and geometry reconfiguration, avoiding
self-collision by implementing topology reconfiguration at
appropriate times. The topological reconfiguration process
adds complication and time to the execution process which
would be better if avoided whenever possible. Hence, if pos-
sible a geometry only motion planning for variable topology

truss systems would be desirable and was introduced briefly
in [15], and this paper presents the complete algorithm of
this idea.

III. SINGLE-NODE PLANNING

A. Variable Topology Truss Configuration

A variable topology truss can be fully represented as an
undirected graph G = (V,E) where V is the set of vertices
of G and E is the set of edges of G: each member can
be regarded as an undirected labeled edge e ∈ E of the
graph and every intersection among members can be treated
as a vertex v ∈ V of the graph. Every v ∈ V has a property
Pos to define the Cartesian coordinates of the vertex namely
v [Pos] = [vx, vy, vz]

ᵀ ∈ R3 which is also the configuration
of the node. Let qv = v [Pos] and it is apparent that the
configuration space of node v denoted as Cv is R3. The
state of e = (v1, v2) ∈ E can be defined by qv1 and qv2 .

The shape of a variable topology truss is modified by
controlling or moving nodes. For a node v ∈ V in a VTT
G = (V,E), its motion is achieved by changing the length
of all attached members denoted as Ev ⊆ E. Ev can be
regarded as a parallel robot with all members being the
joint actuators and, when moving node v, self-collision could
happen between some pair of members in Ev or between
e ∈ Ev and ē ∈ E \ Ev .

B. Obstacle Region and Free Space

When moving a single node v ∈ V in G = (V,E), the
state of every e ∈ Ev , denoted as Av(qv), can only be
changed by altering qv . For this node v, the obstacle region
Cvobs ⊆ Cv = R3 is defined as:

Cvobs = {qv ∈ R3|Av(qv) ∩ Ov 6= ∅} (1)

in which Ov is the obstacle for Ev . Then the free space of
node v is just the leftover configurations denoted as

Cvfree = R3 \ Cvobs (2)

Theorem 1: For a given node v in G = (V,E), Cvobs can
be fully defined by the states of ∀e ∈ E \ Ev .

Proof: Suppose the node to move is vi ∈ V then there
are three cases where a moving member e = (vi, vj) ∈ Evi

could collide with other members:
1) Member (vi, vj) ∈ Evi may collide with (vm, vn) ∈

E \ Evi as shown in Fig. 1a, and the obstacle region
generated by (vm, vn) can be defined by an unbounded
polygon formed by member (vm, vn) and node vj (the
blue polygon in Fig. 1a). Since one node is connected
with at least three nodes in a VTT, ∃vl ∈ V , (vj , vl) ∈
E \ Ev . Therefore, the obstacle region in this case is
defined by states of members in E \ Evi ;

2) Member (vi, vj) ∈ Evi collides with member
(vj , vm) ∈ E \ Evi if and only if the trajectory of
vi intersects with r, a ray starting at qvj and pointing
in the direction of qvm−qvj as shown in Fig. 1b. Then
this ray-shaped obstacle region is defined by state of
the member (vj , vm) ∈ E \ Evi ;

(a) (b) (c)

Fig. 1. (a) (vi, vj) collides with (vm, vn) when vi is on the blue polygon.
(b) (vi, vj) collides with (vm, vj) when vi is on the blue ray r. (c) (vi, vj)
collides with (vi, vk) when vi is on the blue ray r1 or r2.

3) Member (vi, vj) ∈ Evi collides with (vi, vk) ∈ Evi

if and only if the trajectory of vi intersects with two
rays r1 or r2 where r1 starts from qvk and points in
the direction of qvk − qvj and r2 starts from qvj and
extends in the opposite direction, as shown in Fig. 1c.
Since ∃vm ∈ V , (vm, vk) ∈ E \ Evi , r1 is contained
in the obstacle region caused by (vm, vk) and (vi, vj).
Hence r1 is fully defined by the states of members in
E \ Evi . And similar approach can be applied to r2.
Therefore, these obstacle regions are fully defined by
the states of members in E \ Evi .

With Theorem 1, Cvobs is constructed by all polygons
generated from E \Ev . For a simple VTT shown in Fig. 2a,
the obstacle region Cv0obs for node v0 is shown in Fig. 2b. The
number of these polygons is of O(|E|2).

C. Free Space Boundary

All the polygons defined by E \ Ev form the obstacle
region Cvobs for node v. If v is on any polygon, collision
must happen among members. However, node v may not be
able to move to any location inside Cvfree from its initial
configuration qvi because Cvfree may be not fully connected
and can be separated by Cvobs. For example, Cvobs is composed
of six polygons shown in Fig. 3, but node v is only able
to move freely inside the space enclosed by polygon P1,
P2, P3, P4 and P5 starting from its current location. P6 as
well as parts of polygons P1 — P5 are outside the enclosed
space. This enclosed space is the subset of Cvfree denoted
as Cvfree(qv) where qv is the initial location of node v. It

(a) (b)

Fig. 2. (a) Given node v0, one of its neighbors v1 and a member (v6, v8)
can define the blue polygon. This polygon is part of Cv0

obs. (b) The obstacle
region Cv0

obs of v0.

Fig. 3. v is enclosed by some polygons and any polygon outside the
enclosure has nothing to do with Cv

free(q
v).

is necessary to find the boundary of Cvfree in order to do
motion planning for v.

1) Polygon Intersection: Given a polygon Pi with α sides
denoted as sij where j ∈ [1, α], if Pi is connected with a set
of polygons denoted as Nij through sij , then Nij is called
the neighbor set of Pi at side sij .

When checking intersections, there are four possible cases
in terms of the intersection set of two polygons. For the cases
that the intersection set is empty and the intersection set only
contains a single point, no further computation is needed.

Another case that the intersection of two polygons is a
line segment or a ray is shown in Fig. 4a. In this case, both
polygons would be cut into two pieces by the intersection
line. Let the two intersected polygons be P1 and P2, and
the resulted separated polygons are {P ′

1, P ′′
1 } and {P ′

2,
P ′′
2 }, respectively. Assume that P1 has α1 sides denoted

as S1 = {s1j | j ∈ [1, α1]}. Similarly, we have S′
1 for P ′

1.
Then, for any side s′1j ∈ S′

1 such that s′1j = s1m ∈ S1,
namely this edge is inherited from P1, the neighbor set N ′

1j

of P ′
1 is equal to the neighbor set N1m of P1. This is called

inheritance process. And for any side s′1j ∈ S′
1 such that

∃s1m ∈ S1, s′1j is a part of s1m, namely s1m in P1 is cut
and P ′

1 only inherits part of s1m, we check every polygon
in N1m and all those polygons that are connected with P ′

1

compose N ′
1j . This is called the recheck process. Finally, for

the side s′1j ∈ S′
1 which coincides with the cutting line, let

N ′
1j = {P ′′

1 , P
′
2, P

′′
2 }. This is called the adding process. The

same approaches will also be applied to P ′′
1 , P ′

2 and P ′′
2 to

compute their neighbor sets. In addition, there are special
situations for the third case. If the intersection lies on a side

(a) (b)

Fig. 4. (a) The intersection between the polygon generated by node v1
with member (v6, v8) and the polygon by node v2 with member (v6, v7)
is a ray. (b) The intersection between the polygon generated by node v1
with member (v2, v3) and the polygon by node v4 with member (v2, v3)
is also a polygon which is the region between the two parallel black lines.

of one polygon, say P1, and inside another, say P2, then
only P2 is cut and P1 only requires the adding process. If
the intersection lies on a side of both polygons, only adding
process is applied to both.

The last case occurs when two polygons lie on the same
plane and their intersection is a polygon (e.g. Fig. 4b). For
this case, one of the polygons, e.g. P1, remains unchanged
and the other one, e.g. P2, can be divided into a set of convex
polygons, R2, so that no polygon in R2 overlaps P1. To do
this, starting from any s1m ∈ S1, we cut P2 into P ′

2 and
P ′′
2 using the line on which s1m lies and apply above three

processes to compute the neighbors of P ′
2 and P ′′

2 . Only
one of the resulted two polygons overlaps P1, e.g. P ′′

2 . We
put P ′

2 into R2 and, if it is a neighbor of P1, add it to
neighbor sets of P1 and add P1 to neighbor sets of P ′

2. Then
continue to apply this operation to cut P ′′

2 using another side
s1n ∈ S1 \ {s1m}. Repeat this process until there is a newly
generated polygon that is fully contained in P1 and remove
it from neighbors sets of polygons in R2.

The motion of a VTT node is kept inside the boundary
of the workspace. The above operations are also applied to
the boundary of the workspace. And after this process, we
would obtain a set of polygons Pobs, forming the whole Cvobs
and the boundary of workspace. Since each pair of polygons
is checked, this process has quadratic time complexity in the
number of polygons and therefore, O(|E|4).

2) Boundary Search: For a polygon Pi with αi sides
and all of its neighbor sets {Nij | j ∈ [1, αi]}, it is
fully connected if and only if ∀j ∈ [1, αi], Nij 6= ∅. The
resulting polygons after intersection process are separated
into two sets: the set of all fully connected polygons F
and the set of all not fully connected polygons U . Suppose
the workspace is closed, it can be seen that the boundary
of Cvfree(qv), a polyhedron, can only be constructed from
fully connected polygons. For any polygon Pi, there are
two normal vectors in different directions perpendicular to
the plane it lies on. The one pointing inside Cvfree(qv) is
called the inner direction vector denoted as ni. The distance
between node v and a polygon is the minimum distance
between v and any points on this polygon. The polygon Ps

with the shortest distance to v (if multiple, choose the one
with the maximum distance between v and the plane that the
polygon lies on) must be a boundary polygon and we can
find ns regardless of whether Cvfree(qv) is convex or not.

Then, Algorithm 1 is used to search for a set of boundary
polygons Pb of Cvfree(qv), shown in Fig. 5a. Since every
polygon is checked at most once, this process takes O

(
|E|2

)

time. After this process, the set U has to be refined by
removing polygons that are outside the obtained boundary.

D. Cell Decomposition

The enclosed free space Cvfree(qv) is not necessarily
convex which can be further decomposed into several convex
polyhedrons. The problem to decompose a non-convex poly-
hedra into a minimum number of convex pieces is known
to be NP-hard [16]. We pass all polygons in Pb into a
function of the Computational Geometry Algorithms Library

Algorithm 1: Boundary Search Algorithm
Input: qv current position of node v

Pobs the set of all polygons
Output: The set of boundary polygons Pb of

Cvfree(qv)

1 Ps ← polygon closest to node v;
2 Pb ← ∅;
3 QP ← ∅;
4 QP .enqueue(Ps);
5 while QP 6= ∅ do
6 Pi ← QP .dequeue();
7 Pb ← Pb ∪ {Pi};
8 for sij ∈ Si do
9 P ij ← the innermost polygon in Nij along

ni;
10 Compute inner direction vector n̄ij of P ij ;
11 if P ij /∈ Pb and P ij /∈ QP then
12 QP .enqueue(P ij);

13 return Pb

(CGAL) to decompose the space into O(r2) where r is the
number of edges that have two adjacent facets that span
an angle of more than 180° with respect to the interior of
the ployhedron [17]. The result is shown in Fig. 5b. Each
convex polyhedron denoted as c is a cell in which the node
can move freely without considering collision. However,
some cells may intersect with some polygon P in U (set
of not fully connected polygons) and these cells need to be
further separated into two cells by the plane on which P lies
(this is because CGAL ignores this case when doing convex
decomposition). This checking process takes also O(|E|4)
time, so the total time complexity of boundary construction
for Cvfree(qv) is O(|E|4).

E. Path Planning

With all decomposed cells, a graph G = (V, E) can be
constructed where V is the set of all decomposed cells and E
is the set of edges with each edge representing the connection
of two adjacent cells. The cost of an edge is the distance
of the trajectory the node has to traverse from one cell to
another cell. Two cells are adjacent if and only if they are

(a) (b)

Fig. 5. (a) Cv0
free(q

v0) is bounded by polygons. (b) Cv0
free(q

v0) is
decomposed into multiple convex polyhedrons.

Fig. 6. The path planned for v0 to move from its initial location qvi to
qvg is shown as the green line as well as the involved cells shown as a blue
polyhedron and a red polyhedron traversed by the trajectory .

not separated by polygons in U . When traversing from one
cell c′ to its adjacent cell c′′ in G, the trajectory is a straight
line connecting the centers of two adjacent cells if it is inside
Cvfree(qv). Otherwise, the trajectory is from the center of cell
c′ to the center of the intersection polygon between c′ and c′′,
then to the center of c′′. For node v, given its initial location
qvi and goal location qvg , find the cell ci and cg containing
qvi and qvg respectively. Then a path from ci to cg in G can
be found using Dijkstra Algorithm. For example the planned
path for v0 in a simple VTT is shown in Fig. 6.

F. Completeness for Single Node Planning

We claim that this single-node planning algorithm is
complete, i.e. it must compute a (continuous) path, τ :
[0, 1] → Cvfree, such that τ(0) = qvi and τ(1) = qvg , or
correctly report that such a path does not exist [18].

According to Theorem 1, the obstacle region Cvobs of a
node v is fully defined, as well as free space Cvfree = R3 \
Cvobs. Recall that for a configuration of a node qv , Cvfree(qv) is
the enclosed space containing qv and its boundary is formed
by either Cvobs or the workspace boundary, thus v cannot
go outside Cvfree(qv) from qv , or it will traverse the obstacle
region or the workspace boundary. Hence, if the goal location
qvg /∈ Cvfree(qv), there is no feasible path. Otherwise, there
must be a feasible path τ connecting qvg with qvi .
Cvfree(qv) is a polyhedron that can be decomposed into

T convex polyhedrons denoted as {ct|t = 1, 2, · · · , T} by
convex decomposition operation, and qvi and qvg must be in
some cells. Let qvi ∈ ci and qvg ∈ cg . Node v can move
freely from qv1 to qv2 as long as qv1 ∈ ct and qv2 ∈ ct where
t = 1, 2, · · · , T . Then, for adjacent cells cm and cn, there
must exist a feasible path τmn : [0, 1]→ Cvfree(qv) ⊆ Cvfree
such that τmn(0) = qvm and τmn(1) = qvn where qvm ∈ cm
and qvn ∈ cn since node v can always move from qvm to the
common boundary of cm and cn freely and then move to qvn
freely. Recall that all of the convex polyhedron cells construct
a graph G = (V, E) and Dijkstra Algorithm is complete to
find the shortest path, then it is guaranteed to find a sequence
of convex cells from ci to cg . Hence, the path τ : [0, 1] →
Cvfree such that τ(0) = qvi and τ(1) = qvg is derived.

IV. SHAPE MORPHING APPROACH
With the ability to find a path of a single node in VTT,

shape morphing can be achieved by a sequence of single-
node motion. Assume there are n nodes v1, v2, · · · , vn

that should be moved from qv1i , qv2
i , · · · , qvni to qv1

g , qv2g ,
· · · , qvng respectively to achieve a shape morphing task. We
first compute Cv1free(qv1i) and move v1 to qv1g , then compute
Cv2free(qv2i). If qv2g ∈ Cv2free(qv2i), move v2 to qv2g . Otherwise,
try move the next candidate. The process is repeated until
all nodes are moved to their destination or return failure.
Thus the problem reduces to be finding a sequence of
node motions. In the worst case, we have to try n! times
which is the permutation of the number of moving nodes.
The efficiency of single-node planning makes this approach
applicable for the multi-node planning problem. The benefit
of doing this is that we don’t need to do the free space
computation and cell decomposition frequently. However, the
drawback is that it may not be able to find the solution for
some extreme cases even there exists a feasible path.

V. EXPERIMENTS

The algorithm is implemented in C++ with the Boost
Graph Library (BGL) [19] and the Computational Geometry
Algorithms Library (CGAL) [17]. We use CGAL to do
convex decomposition of a non-convex polyhedron and use
BGL to do graph search. To demonstrate the algorithm, two
experiments were conducted, both on a single core of an Intel
i7 processor at 2.20 GHz. The first experiment is a single-
node planning and the second one is a multi-node planning.

A. Single-Node Experiment

Several tests were used to evaluate our approach and do
comparison with RRT, which is previously used for VTT
geometry motion planning. The VTT used in this test is
shown in Fig. 7. For each node v, a goal location qvg ∈
Cvfree(qvi) satisfying ‖qvg − qvi ‖ < 1 is selected randomly.
The results are shown in the table I.

From this test result, our approach is faster than RRT. In
addition, one significant feature of VTT is able to achieve
large workspace. But RRT can take more than 40 s to search
a path with 4 times larger workspace, while our method is

Fig. 7. A VTT Constructed by 18 Members

TABLE I
COMPARISON OF OUR METHOD WITH RRT

Test Node Our Method / Cell Decomposition (s) RRT (s)
v0 0.3031 / 0.2301 0.3050
v1 0.3581 / 0.2740 1.0245
v2 0.5145 / 0.4383 0.9092
v3 0.1292 / 0.0552 2.2419
v4 0.1013 / 0.0294 0.7646
v5 0.0578 / 0.0327 0.8052
v6 0.2796 / 0.2022 0.6283

not affected by the workspace size. Also most time in our
approach is taken by CGAL for cell decomposition which
can be imporved by using a faster cell decomposition method
but may end up with more convex cells generated.

A VTT shown in Fig 8a, constructed from 17 members,
is used for a difficult task test. The task is to move node v7
from its initial configuration qv7i to a goal configuration qv7g
shown in Fig. 9d. This is extremely hard for RRT because the
space is narrow. The result of cell decomposition is shown in
Fig. 8b with 56 cells in total. For this task, node v7 needs to
traverse three cells as shown in Fig. 9. The planning process
takes 1.054 s, among which CGAL takes 0.959 s.

B. Multi-Node Experiment

The experiment for multi-node planning is to change the
shape of a cubic VTT shown in Fig 10a to a tower VTT
shown in Fig. 10b. The VTT is composed of 21 members
and there are four nodes v1, v3, v5 and v6 involved in
this shape morphing process. The approach is able to find
a valid sequence of moving each node and the result is

(a) (b)

Fig. 8. (a) A VTT is constructed from 17 members with 8 nodes. (b)
Cv7
free(q

v7
i) is decomposed into 56 cells in total.

(a) (b)

(c) (d)

Fig. 9. The task is to move node v7 from its initial configuration qv7i
shown in (a) to a goal configuration qv7g shown in (d). The three cells and
the complete path node v7 has to traverse are shown. v7 is moved to the
intersection between the first cell and the second cell shown in (b), then to
the center of the second cell shown in (c), and finally to the goal location
inside the third cell.

(a) (b)

Fig. 10. The motion task is to change the shape of a VTT from (a) a cubic
truss for rolling locomotion to (b) a tower truss for shoring.

(a) (b)

(c) (d)

Fig. 11. The nodes are all encircled by ”◦” and their complete paths are
shown as ”—” path. (a) For node v1, there are 61 cells generated after cell
decomposition process and it has to traverse five cells to go to the destina-
tion. (b) For node v3, there are 87 cells generated after cell decomposition
process and it has to traverse three cells to go to the destination. (c) For
node v5, there are 40 cells generated after cell decomposition process and
it has to traverse seven cells to go to the destination. (d) For node v6, there
are 34 cells generated after cell decomposition process and it has to traverse
two cells to go to the destination.

to move v1, v3, v5 and v6 in order. The motions for all
involved nodes are shown in Fig. 11a, Fig. 11b, Fig. 11c
and Fig. 11d respectively. It takes 4.004 s to find the path to
do shape morphing and 3.509 s is consumed by CGAL. This
experiment is also tested in [9] and, with the retraction-based
RRT algorithm, a waypoint that node v5 has to be moved
higher than node v1 needs to be added manually to mitigate
the narrow passage problem.

VI. CONCLUSION

A fast and complete approach is presented to compute the
enclosed free space of a given node in a variable topology
truss which makes it possible to do cell decomposition
more efficiently and accurately. Then a simple graph-based
searching algorithm can be used to generate an optimal path
for a single-node motion task. Based on this approach, a
shape morphing algorithm for VTT systems is introduced
by changing the locations of multiple nodes. Some useful
applications are used to demonstrate the effectiveness of the
algorithm. Future work will focus on the high-level topology
reconfiguration in a large scale by applying this technique.

REFERENCES

[1] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular self-reconfigurable robot systems:
Grand challenges of robotics,” IEEE Robotics & Automation Mag-
azine, vol. 14, no. 1, pp. 43–52, March 2007.

[2] J. W. Romanishin, K. Gilpin, S. Claici, and D. Rus, “3d m-blocks:
Self-reconfiguring robots capable of locomotion via pivoting in three
dimensions,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA), May 2015, pp. 1925–1932.

[3] M. Yim, D. G. Duff, and K. D. Roufas, “Polybot: a modular recon-
figurable robot,” in Proceedings 2000 ICRA. Millennium Conference.
IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065), vol. 1, April 2000, pp. 514–520
vol.1.

[4] A. Spröwitz, R. Moeckel, M. Vespignani, S. Bonardi, and A. Ijspeert,
“Roombots: A hardware perspective on 3d self-reconfiguration and
locomotion with a homogeneous modular robot,” Robotics and Au-
tonomous Systems, vol. 62, no. 7, pp. 1016 – 1033, 2014, reconfig-
urable Modular Robotics.

[5] C. Liu, M. Whitzer, and M. Yim, “A distributed reconfiguration plan-
ning algorithm for modular robots,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 4231–4238, Oct 2019.

[6] K. Miura, “Design and operation of a deployable truss structure,” in
NASA. Goddard Space Flight Center The 18th Aerospace Mech. Symp.,
Greenbelt, Maryland, May 1984, pp. 49–63.

[7] G. J. Hamlin and A. C. Sanderson, “Tetrobot: a modular approach to
parallel robotics,” IEEE Robotics Automation Magazine, vol. 4, no. 1,
pp. 42–50, March 1997.

[8] A. Lyder, R. F. M. Garcia, and K. Stoy, “Mechanical design of
odin, an extendable heterogeneous deformable modular robot,” in 2008
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Sep. 2008, pp. 883–888.

[9] S. Jeong, B. Kim, S. Park, E. Park, A. Spinos, D. Carroll, T. Tsabedze,
Y. Weng, T. Seo, M. Yim, F. C. Park, and J. Kim, “Variable topology
truss: Hardware overview, reconfiguration planning and locomotion,”
in 2018 15th International Conference on Ubiquitous Robots (UR),
June 2018, pp. 610–615.

[10] A. Spinos, D. Carroll, T. Kientz, and M. Yim, “Variable topology truss:
Design and analysis,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Sep. 2017, pp. 2717–2722.

[11] C. Liu and M. Yim, “Reconfiguration motion planning for variable
topology truss,” in 2019 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), Nov 2019, pp. 1941–1948.

[12] A. Casal and M. Yim, “Self-reconfiguration planning for a class of
modular robots,” in Proc. SPIE, vol. 3839, 1999, pp. 3839–3839–12.

[13] Z. Butler, K. Kotay, D. Rus, and K. Tomita, “Generic decentralized
control for lattice-based self-reconfigurable robots,” The International
Journal of Robotics Research, vol. 23, no. 9, pp. 919–937, 2004.

[14] N. Usevitch, Z. Hammond, S. Follmer, and M. Schwager, “Linear
actuator robots: Differential kinematics, controllability, and algorithms
for locomotion and shape morphing,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2017, pp.
5361–5367.

[15] C. Liu, S. Yu, and M. Yim, “Shape morphing for variable topology
truss,” in 2019 16th International Conference on Ubiquitous Robots
(UR), June 2019.

[16] B. Chazelle, “Convex partitions of polyhedra: a lower bound and
worst-case optimal algorithm,” SIAM Journal of Computing, vol. 13,
no. 3, pp. 488–507, 1984.

[17] (2019) The computational geometry algorithms library. [Online].
Available: https://www.cgal.org/

[18] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[19] (2019) The boost graph library (bgl). [Online]. Available: https:
//www.boost.org/doc/libs/1 71 0/libs/graph/doc/index.html

