
1

Polygon-based Random Tree Search Planning for
Variable Geometry Truss Robot*

Sumin Park1, Jangho Bae1, Seohyeon Lee2, Mark Yim3, Jongwon Kim1 and TaeWon Seo2, Member, IEEE

Abstract—This paper proposes the use of a polygon-based
random tree path planning algorithm for a variable geometry
topology system (VGT). By combining a path planning algorithm
and our previous non-impact locomotion algorithm, the proposed
VGT system reaches an objective point. The proposed path
planning algorithm provides the desired set of support polygons
with a modified rapid random tree algorithm. The algorithm can
significantly reduce distortion of the VGT system while moving
by limiting the deformation of the desired support polygon.
With this algorithm feature, constraint violations of the system
were significantly reduced with respect to using a normal rapid
random tree algorithm for path planning. The performance of
the algorithm was validated using the simulation results.

Index Terms—Cellular and Modular Robots, Motion and Path
Planning, Redundant Robots, Kinematics

I. INTRODUCTION

Avariable geometry topology (VGT) is a truss structured
system that comprises actively actuated linear trusses

linked with passive rotational ball joints. The VGT concept
has been researched for many years. VGT was first proposed
for the design of a space crane arm by Miura et al. [1]. Hughes
et al. also designed a space manipulator, Trussarm, using
the VGT concept [2]. The VGT concept has not only been
used for a fixed manipulator arm but also for a locomotion
system. Given the flexibility of VGT, it can adapt to complexly
shaped terrain. Hamlin and Sanderson developed a recon-
figurable VGT for investigating various surfaces with a six-
legged walking configuration [3]. Curtis et al. developed and
fabricated various VGT designs for space exploration [4]. We

Manuscript received: Aug, 27, 2019; Revised Nov, 26, 2019; Accepted Dec,
27, 2019.

This paper was recommended for publication by Editor Nancy Amato upon
evaluation of the Associate Editor and Reviewers’ comments.

*This work was supported by the Industrial Core Technology Development
Project through Ministry of Trade, Industry and Energy, South Korea (MOTIE)
under Grant 1006-9072 and the Fostering Global Talents for Innovative
Growth Program (P0008748, Global Human Resource Development for Inno-
vative Design in Robot and Engineering) supervised by the Korea Institute for
Advancement of Technology. (KIAT) (Corresponding author: TaeWon Seo),
(Co-first authors: Sumin Park, Jangho Bae)

1J. Bae, S. Park, and J. Kim are with the Department of Mechan-
ical Engineering, Seoul National University, Seoul 08826, Republic of
Korea jangho.bae91@gmail.com; smpark@rodel.snu.ac.kr;
jongkim@snu.ac.kr J. Bae is currently working as a visiting researcher
at University of Pennsylvania.

2S. Lee and T. Seo are with the School of Mechanical Engineering, Hanyang
University, Seoul 04763, Republic of Korea hotkowork@gmail.com;
taewonseo@hanyang.ac.kr S. Lee is currently working as a visiting
researcher at University of Pennsylvania.

3M. Yim is with the School of Mechanical Engineering and Ap-
plied Mechanics, University of Pennsylvania, Philadelphia, PA 19146 USA
yim@seas.upenn.edu

Digital Object Identifier (DOI): see top of this page.

are currently developing a VGT system for performing search
and rescue tasks at disaster sites [5]. The flexible properties
of the VGT have advantages when moving on irregular terrain
at disaster sites.

To facilitate VGT system moving on terrain, the locomotion
algorithm and shape of the system should be derived. Previous
VGTs have used various locomotion algorithms for moving.
Hamlin and Sanderson introduced a six-legged walking gait
motion for VGT [3]. Lee and Sanderson proposed a loco-
motion algorithm that used a tipping and rolling motion for
icosahedral VGT [6]. Usevitch et al. improved the tipping and
rolling locomotion algorithm by adding a shape-changing task
and making the center of mass follow a desired trajectory
[7]. These previous dynamic rolling locomotion approaches
including tipping motion may cause structural damage to the
system because of the impact force from collision with the
surface. We introduced a non-impact rolling locomotion algo-
rithm for VGT to make its center of mass follow the desired
trajectory [8]. With this algorithm, the system can perform a
rolling motion without tipping by maintaining the center of
mass inside the support polygon. However, a large-scale path
planning algorithm is needed to automatically perform search
and rescue operation.

The rapidly-exploring random tree (RRT) search algorithm
is among the most popular methods for large-scale path
planning of a robot. RRT was first proposed by Lavalle to
solve a high degree-of-freedom problem with nonholonomic
constraints [9]. Path planning with an obstacle is a typical
case of having a high degree-of-freedom and nonholonomic
constraints. RRT implementation in path planning for mobile
robots was introduced by Bruce and Veloso [10]. The RRT
method has advantages for planning a path on an irregular
plane and with uncertainties as shown in Bry and Roy [11].
We selected and modified the RRT algorithm for large-scale
path planning at disaster site.

In this paper, the polygon-based random tree (PRT) path
planning algorithm is proposed for VGT. Previous locomotion
algorithms only considered the trajectory of the center of
mass, which cannot guarantee the next rolling step of the
VGT. A large amount of distortion from the original shape
typically caused constraint violations. Therefore, we developed
a path planning algorithm that can guarantee the next rolling
step without violating hardware constraints by maintaining
the shape of the VGT support polygon. The proposed PRT
provides the desired position and shape set of the support
polygons to reach the objective point. The VGT follows the set
of support polygons using our non-impact rolling locomotion
algorithm [8]. The advantages of PRT were demonstrated by

This accepted article to IEEE Robotics and Automation Letters is made available by the authors in compliance with IEEE policy.
Please find the final, published version in IEEE Xplore, DOI: 10.1109/LRA.2020.2965871.

c©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

https://ieeexplore.ieee.org/document/8957053


2

1

5

74

2

6

3

0

1 0.5

0.5

1

0.5

1.5

0

-1-0.5

(a) (b)

Fig. 1. Structure of the proposed octahedral VGT: (a) initial configuration and
node numbers and (b) configuration during rolling motion. The VGT support
polygon is denoted in pink.

simulation results.
This paper is organized as follows. In section 2, kinematic

analysis of our VGT is introduced. Support polygon-based
path planning and non-impact rolling locomotion algorithm
are presented in section 3. Algorithm simulation results are
provided in section 4. Finally, conclusions are summarized in
section 5.

II. SYSTEM ANALYSIS

A. Configuration and Notation

Our proposed VGT system was designed to perform search
and rescue at disaster sites. We considered topology recon-
figuration to achieve both movement and structure shoring
[5]. By minimizing the number of edges and vertexes, a
modified octahedral shape was created. Fig. 1 shows the VGT
configuration diagram. The VGT has 7 vertexes and 16 edges;
one vertex is in the center of the VGT and the others are
around the octahedron. The center vertex is connected to the
four vertexes around the octahedron to maintain its position.

In the remainder of the paper, the following terms are used.
Each VGT vertex was termed a node, and each edge was
termed a member. A node comprises a rotational 3-degrees-
of-freedom passive joint, while a member is operated using
a linear actuator. A polygon that comprises nodes attached to
the ground is termed a support polygon, and is denoted in
pink in Fig. 1. The connection between nodes and members
were defined by a graph GGG that consists of a node set
NNN = {1,2, · · · ,7} and a member set MMM = {m1,m2, · · · ,m16},
where mk = {i, j} is a member that connects the i-th and j-
th nodes. The position vector of the i-th node is denoted as
PPPi = [pix, piy, piz]

>. The vector xxx contains all position vectors
of the nodes xxx = [p1x, · · · , p7x, p1y, · · · , p7y, p1z, · · · , p7z]

>. Two
nodes that are connected to each other by a member are termed
adjacent nodes.

B. Kinematics Analysis

VGT kinematic equations were derived to define VGT
movement. First, the relation between the projected center
of mass position and node position was derived. The mass
values of nodes are considered to be all equal and the mass of
members is neglected. By differentiating the relation equation,

the Jacobian for the projected center of mass position can be
derived as follows:

ẋxxCM = Mẋxx (1)

where xxxCM = [xCM,yCM]> is the center of mass position
projected to the ground without z component, and M is the
Jacobian matrix of center of mass.

Second, the relation between the length of members and
position of nodes was derived, i.e. the inverse kinematics of the
VGT. The length of the k-th member that connects node i and j
can be written as (2). By combining the length equation of all
members and differentiating, the inverse kinematics equation
of the VGT can be derived as (3).

Lk =
∥∥PPPi−PPP j

∥∥ (2)

L̇LL = Rẋxx (3)

where LLL = [L1,L2, · · · ,L16]
> is the vector of the link lengths,

and matrix R is the inverse Jacobian of the VGT.

C. Constraints

The proposed VGT has constraints because of the size,
power, and collision of mechanical components. The VGT
constraints are summarized as follows.
• Length and linear velocity limitation of each member:

because of the mechanical design of a linear actuator,
the length of the k-th member, Lk, is limited to the
range of motion of a linear actuator. In addition, the
hardware performance limits the linear actuation speed
of the members.

Lmin ≤ Lk ≤ Lmax (4)

L̇k ≤ L̇max (5)

• Maintaining minimum manipulability: the VGT should
maintain an amount of manipulability to fully control the
movement of each member. Therefore, the manipulability
of the VGT can be constrained as follows:

κ =
σmin(R)

σmax(R)
≥ κmin, (6)

where R is the inverse kinematics Jacobian in (3).
σmax(R) and σmax(R) are the maximum and minimum
singular value of R.

• Ground collision: nodes cannot be below the ground.
Therefore, the z component of all nodes should be greater
than zero.

piz ≥ 0 (7)

• Collision between members: the members should not
collide with each other. A collision can be prevented by
keeping a distance margin between members. We used
Lumelsky’s distance calculation algorithm for finding this
distance [12]. We set a constraint equation to ensure the
distance between any two members cannot be less than
the margin, to prevent collision. This constraint can be
summarized as follows:

dmin(mi,m j)≥ d0, (8)



3

where dmin(mi,m j) is the minimum distance between
member i and j.

• Angular collision between adjacent members: the angle
between two adjacent members cannot be reduced to less
than a certain value, because of the size of the connecting
part between a node and member. Therefore, the angle
between the adjacent member is limited to be greater than
the collision prevention margin. The angle was calculated
using the direction cosine method as follows:

θi jk = cos−1
[
(PPPi−PPPk)

>(PPP j−PPPk)∥∥PPPi−PPPk
∥∥∥∥PPP j−PPPk

∥∥
]
≥ θ0. (9)

The i-th node and the k-th node in (9) are the adjacent
nodes, and the j-th node and the k-th node are also
adjacent.

III. PATH PLANNING AND LOCOMOTION ALGORITHM

A. Polygon-based Random Tree Search Algorithm

To determine the desired trajectory to reach the destination
point, a RRT search algorithm was modified [9]. PRT identifies
a set of desired Polygons by randomly expanding the polygon
tree. In the proposed PRT algorithm, the tree structure is as
follows:

T = {Polygon,E} (10)

Polygon = {FFFoooooottt1,FFFoooooottt2,FFFoooooottt3} (11)

Nodes in the tree comprise Polygons, which contain Foots
that construct the Polygon. A Foot is a positional vector of
one vertex that belongs to a Polygon. In the case of VGT,
the shape of a support polygon is triangle. Therefore, three
Foots are contained on a Polygon. The term E in (10) denotes
an edge of the tree structure, which describes the relation of
parent and child Polygons.

Algorithm 1 shows the overall algorithm for PRT. For
each cycle, the objective point of the algorithm is basically
randomly selected within the operational region. To ensure
the algorithm converges well, the objective point is sometimes
set as the goal position with a designated probability, which
is denoted as MixingFactor in line 3 of Algorithm 1. The
MixingFactor was set as 0.2 during the paper.

The new Polygon is expanded from the previous Polygon
sharing two Foots. Fig. 2 shows the polygon tree expansion
schematic. First, the three alternatives of the next Foot are
placed around the previous Polygon. The distances between a
Foot alternative and two Foots of the previous Polygon that are
connected to it are set as the same distance, Lnominal . Lnominal
represents the initial member length, which was set as 1 in the
study. The nearest Foot alternative from the objective point,
which is randomly determined during the previous step, is
selected for setting the next Foot of the next Polygon. The
PRT provides some flexibility to setting the next Polygon
by permitting a slight distortion within the distortion margin,
which is denoted as a circle in Fig. 2. The next Foot, which is
drawn as a red dot in Fig. 2, is in the closest position within the
distortion margin circle. The radius of the distortion margin
was set as 0.1 during the study.

Algorithm 1: Polygon-based random tree search
Input: T = {Polygoninit ,E},Goal Position

1 Reach Goal = f alse;
2 while Reach Goal == f alse do
3 if Random[0,1]≥MixingFactor then
4 Ob j Position = Random Position;
5 else
6 Ob j Position = Goal Position;
7 end
8 Temp Foot = FindNearestFoot(Ob j Position);

// Making alternative polygon with
new foot

9 Polygon new = MakePolygon(Temp Foot);
10 if ObstacleCollision(Polygon new) == f alse then

// Add new polygon to the tree
11 T.AddPolygon(Polygon new);
12 T.AddEdge(Polygon pre,Polygon new);
13 end
14 if Goal Position ∈ Polygon new then
15 Reach Goal == true;
16 end
17 end
18 return T ;

Objective

position

Current

polygon

Distortion

margin

Next

polygon

Foot alternatives

Foot alternatives

Next
foot

Selected 
foot

nominal
L

Fig. 2. Schematic diagram of finding next support polygon (FindNearestFoot
on line 8, Algorithm 1). The closest foot alternative is denoted as a blue dot.

The algorithm ends when the last Polygon includes the goal
position inside of itself. After obtaining the tree from the PRT
algorithm, the desired set of Polygons can be found by tracking
the parent Polygons from the last Polygon. The path planning
process is shown in the supplementary video.

B. Locomotion Algorithm

After the desired set of support polygons were derived using
the PRT algorithm, a locomotion algorithm was used to ensure
the VGT followed the derived trajectory. The locomotion
algorithm was developed from the concept of our previous
VGT locomotion algorithm [8]. The proposed locomotion
algorithm provides a non-impact rolling motion that prevents
dynamic tip-over motion while following the support polygon
trajectory. The overall locomotion algorithm is provided in
Algorithm 2. The term xxxCM is the position of the center of



4

Polygon (i-1)

Polygon (i)

Polygon (i+1)

Center of mass of a polygon

Fig. 3. Finding the projected center of mass trajectory from the support
polygon path, which is MakeCMTra jectory in Algorithm 2. The center of
mass trajectory is denoted as a red dotted line.

mass of the VGT projected on the ground. The term ẋxxCM,desired
is the projected desired velocity vector of the center of mass.

Algorithm 2: Locomotion between two polygons
Input: Polygon(i),Polygon(i+1),xxx

1 xxxCM,init =Center o f Mass(Polygon(i));
2 Support Polygon = Polygon(i);
3 CCCi =Center o f Mass(Polygon(i));
4 CCCi+1 =Center o f Mass(Polygon(i+1));
5 ẋxxCM,desired = MakeCMTra jectory(CCCi,CCCi+1);
6 while Reach Goal == f alse do
7 if Stability Margin(Support Polygon,xxxCM)≥ 0

then
// Moving phase

8 ∆xxx = MovingControl(ẋxxCM,desired ,xxxCM);
9 xxxnew = xxxpre +∆xxx;

10 else
// Landing phase

11 ∆xxx = LandingControl(Polygon(i+1),xxxCM);
12 xxxnew = xxxpre +∆xxx;
13 if Foot Landing(xxxnew) == true then

// Changing support polygon
14 Support Polygon = Polygon(i+1);
15 end
16 end
17 if xxxCM ==Center o f Mass(Polygon(i+1)) then
18 Reach Goal = true;
19 end
20 end
21 return xxxnew

The locomotion algorithm ensures the VGT follows both the
center of mass and support polygon trajectories. The desired
trajectory of the center of mass can be derived from the support
polygon trajectory. Fig. 3 shows the projected center of mass
trajectory generation process of the locomotion algorithm. By
connecting the center of mass point of each Polygons, the
desired trajectory for the VGT center of mass is determined.
This process is presented from lines 3 to 5 of Algorithm 2.

The locomotion provides a non-impact rolling motion by
dividing the motion into two phases, a moving phase and
landing phase. During the moving phase, the VGT center of
mass is moving through the desired trajectory maintaining
the support polygon. The VGT is operated with the moving

Moving phase Landing phase Moving phase

Center of mass Controlled node Fixed node Support polygon

Fig. 4. Non-impact rolling locomotion process.

phase until the projected center of mass is inside the support
polygon. When the center of mass is on the border of the
support polygon, the VGT is controlled with the landing phase.
During the landing phase, the VGT lands the frontal node
on the ground without changing the projected position of the
center of mass. The frontal node is controlled to land on the
vertex of the next desired support polygon. After the frontal
node lands on the ground, the support polygon changes, and
the VGT is controlled with the moving phase again. Fig. 4
shows the two locomotion algorithm phases.

The velocity of each node ẋxx is calculated via optimization
in each phase. During the moving phase, the node velocity
vector is optimized as (12). The optimization function for the
moving center of mass was previously provided by Usevitch
[7]. With this objective function, the length of each member
is near the initial length, ensuring the center of mass follows
the desired trajectory. The optimization problem during the
moving phase, which is MovingControl in Algorithm 2 line
8, can be written as follows:

min
ẋxx

∥∥ẋxx+L xxx−ddd
∥∥

Subject to Mẋxx = ẋxxCM,desired

Ceqẋxx = 0, Cieqẋxx≤ 0

(12)

Here −L xxx+ddd is the optimal ẋxx to be near to initial member
length, where the term L denotes the graph Laplacian of the
VGT and the term ddd is sum of length and direction of members
at each node [7] [13]. The VGT constraints are arranged as
Ceq and Cieq, the first is the equality constraint, and the second
is inequality constraint.

Similar optimization is used during the landing phase, but
with a different objective function and constraints. Equation
(13) shows the optimization condition during the landing
phase, LandingControl in line 11, Algorithm 2. The objective
function is selected as the distance between the frontal node
and the foot of the next support polygon. During the landing
phase, the center of mass movement is restricted by adding
the constraint Mẋxx = 0.

min
ẋxx

∥∥PPP f ront −FFFnext
∥∥

subject to Mẋxx = 0
Ceqẋxx = 0, Cieqẋxx≤ 0.

(13)



5

(a) (b) (c)

-2 -1 0 1 2 3 4

x position (m)

-1

0

1

2

3

4

5

y
 p

o
si

ti
o

n
 (

m
)

-2 -1 0 1 2 3 4

x position (m)

-1

0

1

2

3

4

5

y
 p

o
si

ti
o

n
 (

m
)

-2 -1 0 1 2 3 4

x position (m)

-1

0

1

2

3

4

5

y
 p

o
si

ti
o

n
 (

m
)

Fig. 5. Three simulation cases that have different obstacles. The starting point
is indicated as a blue dot and the goal point is indicated as a red dot. (a) Two
obstacles; (b) One obstacle in the middle; (c) Long one obstacle.

PPP f ront denotes the positional vector of the frontal node and
FFFnext is the objective foot positional vector of the next support
polygon.

IV. SIMULATION RESULTS

The advantages of the proposed PRT algorithm were proved
via MATLAB simulation. Two path planning algorithms were
compared. The first was our proposed PRT algorithm and
the second was the original RRT algorithm for the center of
mass path planning, coupled with our previous algorithm for
locomotion [8] to follow the desired center of mass trajectory.
The step size of the original RRT algorithm was set as 0.1 m.
The parameters, including initial link lengths and constraints
are listed in Table I. The parameters were determined in such
a way that both algorithms have the possibility of succeeding.
Llong in Table I is the length of the long member in the initial
state, the exterior members of the octahedral shape. Lshort is the
length of the interior members. The other terms were defined
in the previous section, from (4) to (9).

TABLE I
SIMULATION PARAMETERS

Linit Lmin Lmax L̇max κmin d0 θ0

Llong
Lshort

1.0 m
0.71 m

0.5 m
0.3 m

2.0 m
1.8 m

0.015
m/s 0.10 0.10 m 10◦

Three environments were selected for the locomotion sim-
ulation. The first case is an environment with two square
obstacles. The second case is an environment with one obstacle
in the middle. Finally, the third case features a long rectangular
obstacle that blocks the bottom way to the goal position. The
three cases were presented on Fig. 5. The work space is a
rectangle with range (-1 m, 5 m) in both directions x and y.

Path planning and locomotion with the two algorithms was
repeated 20 times for each case, because the two algorithm
have a random component. The RRT algorithm succeeded in
producing a valid path that satisfies the constraints only in
case 1. Therefore, the two algorithms can only be compared
in case 1. The simulation results on the case 1 are summarized
in Table II. All data in Table II are averages of all successful
paths. The PRT success rate is superior to that of the RRT
via reducing VGT distortion during locomotion. Because of
constraint parameter adjusting for comparison, the success rate

0

0.5

5

1

1.5

4
4

3
3

2 2

1
1

0
0

-1

-1 -2

0

0.5

5

1

1.5

4
4

3
3

2 2

1
1

0
0

-1

-1 -2

(a)

(b)

Fig. 6. VGT movement using two different algorithms on case 1. The center
of mass trajectory is denoted as a purple line. (a) Original RRT combined
with the previous locomotion algorithm. (b) Proposed PRT algorithm.

of PRT was reduced with respect to its maximum capability.
Furthermore, the mean PRT stability margin is much greater
than that of the RRT by maintaining the shape of support
polygons, as seen in the supplementary video.

TABLE II
COMPARISON BETWEEN TWO ALGORITHM ON CASE 1

Success Stability Planning time Locomotion
rate margin Path Locomotion time

RRT 10% 0.094 m 0.020 s 1839.5 s 124.7 s
PRT 55% 0.121 m 0.535 s 182.3 s 134.5 s

The computational time of all planning process (path and
locomotion planning) was much smaller when using the PRT
algorithm as shown in Table II. Although path planning time of
the PRT is about 0.5 s longer than that of the RRT, locomotion
planning time of the PRT is 10 times shorter than that of
the RRT. This is because large distortion of the VGT makes
it difficult for the algorithm to find rolling motion without
violating constraints. Locomotion time, the arrival time at the
goal point, is about 10 s longer on the PRT. However, the RRT
showed very low success rate and long locomotion planning
time, which makes this small advantage of the RRT negligible.

Fig. 6 shows the locomotion simulation using the two
different algorithms. When using the original RRT algorithm,
the VGT center of mass followed the desired trajectory. As
shown in Fig. 6 (a), VGT distortion is large during locomotion.
In contrast, VGT distortion is significantly reduced when
using the proposed PRT algorithm as shown in Fig. 6 (b).
In the PRT algorithm, large VGT distortion is prevented by
designating support polygons. Locomotion simulations of two



6

(a) (b)

RRT PRT

0 100 200 300 400 500 600 700 800 900 1000

time (sec)

0.5

1

1.5

2
le

n
g

th
Length constraint (L

long
)

0 100 200 300 400 500 600 700 800 900 1000

time (sec)

0.5

1

1.5

le
n

g
th

Length constraint (L
short

)

max length

min length

Initial length

0 200 400 600 800 1000 1200

time (sec)

0.5

1

1.5

2

le
n

g
th

Length constraint (L
long

)

0 200 400 600 800 1000 1200

time (sec)

0.5

1

1.5

le
n

g
th

Length constraint (L
short

)

max length

min length

Initial length

Fig. 7. Maximum and minimum members lengths with respect to simulation time. Llong is the long member, surrounding the octahedron, and Lshort is the
short member inside the octahedron. The red line is the maximum length within all members and the blue line is the minimum length. (a) Results using the
RRT, Llong variation 0.46 m, Lshort variation 0.45 m; (b) results using the PRT, Llong variation 0.22 m, Lshort variation 0.16 m.

(a) (b) (c)

-2 -1 0 1 2 3 4

x position (m)

-1

0

1

2

3

4

5

y
 p

o
si

ti
o

n
 (

m
)

-2 -1 0 1 2 3 4

x position (m)

-1

0

1

2

3

4

5

y
 p

o
si

ti
o

n
 (

m
)

-1 0 1 2 3 4 5

x position (m)

-1

0

1

2

3

4

5

y
 p

o
si

ti
o

n
 (

m
)

Fig. 8. Desired paths derived using the two algorithms for each simulation
case. The initial VGT support polygon is denoted as a red triangle. The desired
support polygon trajectory from PRT is denoted as a green line. The desired
center of mass path derived from the original RRT is denoted as a blue line.
The red dot is the goal position and obstacles are presented as gray squares.
(a) Case 1; (b) Case 2; (c) Case 3.

algorithms are presented in a supplementary video of the
paper. The amount of distortion can be estimated by examining
the length of each member. The amount of distortion increases
when the difference between the current and initial lengths
of each member increases. Fig. 7 shows the maximum and
the minimum lengths of members and their initial length.
Using the PRT, the member lengths did not extend beyond
a certain region, while the member lengths are near the
constraint boundary using the original RRT. Therefore, it can
be concluded that using the PRT significantly reduces VGT
distortion during locomotion.

In addition, the PRT produced suitable paths for the case
2 and case 3 that satisfy system constraints. The successful
paths of three cases with two algorithms are drawn in Fig.
8. The RRT path is drawn only for case 1, because the RRT
only succeed in case 1. The results of all cases with the PRT
are summarized on Table III. The success rates of case 2
and 3 were smaller than the ones of case 1. The planning
and locomotion time was increased from case 1 to case 3
because of the complexity of the derived paths. Therefore, the

proposed PRT algorithm can produce suitable paths on various
environments with decent success rate.

TABLE III
SIMULATION RESULT OF THE PRT ON ALL CASES

Success Stability Planning time Locomotion
rate margin Path Locomotion time

Case 1 55% 0.121 m 0.535 s 182.3 s 134.5 s
Case 2 30% 0.121 m 0.173 s 230.8 s 172.1 s
Case 3 30% 0.122 m 0.123 s 359.1 s 248.1 s

V. CONCLUSIONS

In this paper, a path planning algorithm for VGT based
on a support polygon, PRT, was presented. PRT provides
stable path planning and locomotion on various environments
with efficient constraint clearances. PRT was compared to the
original RRT algorithm with path planning and locomotion
simulation in three environments with obstacles. PRT not only
showed a higher success rate compared to that of the original
RRT but also provided stable locomotion. Furthermore, the
PRT succeeded to produce a path for two cases, which couldn’t
be solved by the previous RRT. The PRT algorithm will be
improved for application to uneven surfaces of various slopes.
Also, the possibility for applying learning algorithms to the
PRT will be researched.

ACKNOWLEDGMENT

We thank to Seongjae Jeong, Jinkyu Kim, Byungheon
Kim, Kyumin Park, Seunghyun Kim and Tae Gyun Ahn for
providing RRT program code.



7

REFERENCES

[1] K. Miura, H. Furuya, and K. Suzuki, “Variable geometry truss and its
application to deployable truss and space crane arm,” Acta Astronautica,
vol. 12, no. 7-8, pp. 599–607, 1985.

[2] P. C. Hughes, W. G. Sincarsin, and K. A. Carroll, “Trussarm-a variable-
geometry-truss manipulator,” Journal of Intelligent Material Systems and
Structures, vol. 2, no. 2, pp. 148–160, 1991.

[3] G. J. Hamlin and A. C. Sanderson, “Tetrobot modular robotics: Prototype
and experiments,” in Proceedings of IEEE/RSJ International Conference
on Intelligent Robots and Systems. IROS’96, vol. 2. IEEE, 1996, pp.
390–395.

[4] S. Curtis, M. Brandt, G. Bowers, G. Brown, C. Cheung, C. Cooperider,
M. Desch, N. Desch, J. Dorband, K. Gregory, et al., “Tetrahedral robotics
for space exploration,” in 2007 IEEE Aerospace Conference. IEEE,
2007, pp. 1–9.

[5] A. Spinos, D. Carroll, T. Kientz, and M. Yim, “Variable topology truss:
Design and analysis,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 2717–2722.

[6] W. H. Lee and A. C. Sanderson, “Dynamic rolling locomotion and con-
trol of modular robots,” IEEE Transactions on robotics and automation,
vol. 18, no. 1, pp. 32–41, 2002.

[7] N. Usevitch, Z. Hammond, S. Follmer, and M. Schwager, “Linear
actuator robots: Differential kinematics, controllability, and algorithms
for locomotion and shape morphing,” in 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2017, pp.
5361–5367.

[8] S. Park, E. Park, M. Yim, J. Kim, and T. Seo, “Optimization-based
nonimpact rolling locomotion of a variable geometry truss,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, pp. 747–752, 2019.

[9] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Tech. Rep., 1998.

[10] J. Bruce and M. Veloso, “Real-time randomized path planning for robot
navigation,” in IEEE/RSJ international conference on intelligent robots
and systems, vol. 3. IEEE, 2002, pp. 2383–2388.

[11] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in 2011 IEEE international conference on
robotics and automation. IEEE, 2011, pp. 723–730.

[12] V. J. Lumelsky, “On fast computation of distance between line seg-
ments,” Information Processing Letters, vol. 21, no. 2, pp. 55–61, 1985.

[13] L. Krick, M. E. Broucke, and B. A. Francis, “Stabilisation of infinites-
imally rigid formations of multi-robot networks,” International Journal
of control, vol. 82, no. 3, pp. 423–439, 2009.


