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A Distributed Reconfiguration Planning Algorithm
for Modular Robots
Chao Liu, Michael Whitzer, and Mark Yim

Abstract—Self-reconfigurable modular robots are usually com-
posed of multiple modules with uniform docking interfaces that
can be transformed into different configurations by themselves.
The reconfiguration planning problem is finding what sequence
of reconfiguration actions are required for one arrangement
of modules to transform into another. We present a novel
reconfiguration planning algorithm for the SMORES form of
modular robots. The algorithm compares the initial configuration
with the goal configuration efficiently. The reconfiguration actions
can be executed in a distributed manner so that each module
can efficiently finish its reconfiguration task which results in a
global reconfiguration for the system. In the end, the algorithm is
demonstrated on the SMORES-EP self-reconfigurable modular
robot hardware and some reconfiguration task examples are
provided.

Index Terms—Cellular and Modular Robots, Motion and Path
Planning, Path Planning for Multiple Mobile Robots or Agents.

I. INTRODUCTION

SELF-RECONFIGURABLE modular robots are usually
composed of a small set of building blocks, with uniform

docking interfaces that allow the transfer of mechanical forces
and moments, electrical power, and communication throughout
the robot [1]. These systems are able to adapt to many different
activities, handle hardware and software failures by reconfig-
uring themselves [2]. A fundamental problem to achieve these
goals is known as the self-reconfiguration planning problem.

The self-reconfiguration ability enables a modular system
to change the arrangement of modules from one arbitrary
configuration to another. While the reconfiguration planning
problem is well defined, the problem is usually difficult to
solve because of the physical constraints particular to each
self-reconfigurable robot system. For example, the modules
are usually designed to be simple to manufacture and low-cost
so that each module only has a limited number of actuators
and connectors. This results in limited motion ability and
often complex system constraints. In addition, the number of
possible arrangements for a cluster of modular robots, grows
exponentially with the number of modules which makes the
planning problem intractable to find optimal solutions with
naı̈ve brute-force techniques.

The majority of self-reconfigurable robots are typically
divided into three main types: chain-type, lattice-type and
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mobile-types with some models that are hybrid between these
types. Lattice-type self-reconfigurable robots sit nominally on
a lattice and reconfigure between neighboring lattice positions.
There are already many reconfiguration planning algorithms
for lattice-type robots, such as [3] [4] [5] [6]. However, it
is difficult for lattice-type modular robots to generate some
dynamic locomotion and generic manipulation.

In contrast, chain-type self-reconfigurable robots are partic-
ularly well suited for locomotion and manipulation. Numerous
chain-type modular robotic systems have been developed
in the past few years, such as PolyBot [7], M-TRAN [8],
SuperBot [9], and CKBot [10]. Self-reconfiguration with this
type of robots is often a difficult and time consuming task [2].

The third type, mobile-type robots, use the environ-
ment to move between modules as they reconfigure. Self-
reconfigurable systems that have used mobile-type recon-
figuration include Millibots [11], Swarm-bots [12], Planar
Catoms [13], and Kilobots [14]. In all of these cases, the
systems are composed of large nunmbers of identical robots
that can move around on a flat ground and connect together
to form different planar shapes.

The system we use, SMORES [15], is a hybrid-type that
can achieve all three types of reconfiguration. However, in this
work we will focus on the mobile style of reconfiguration. For
self-reconfiguration planning, graph representations of modu-
lar robot configurations are used and an efficient algorithm to
find reconfiguration actions is developed in such a way that
modules can act in a reasonable order to achieve the goal
configuration efficiently.

The paper is organized as follows. Sec. II reviews relevant
and previous work. Sec. III introduces the hardware platform.
Sec. IV introduces some fundamental parts and concepts. The
algorithm is presented in Sec. V and some experiments and
results are shown in Sec. VI. Finally, Sec. VII talks about the
conclusions and future work.

II. RELATED WORK

The reconfiguration planning problem for modular robots
has been addressed to some extent by some research work.
Casal and Yim [16] firstly published a divide-and-conquer
approach for this problem. Two algorithms were presented
which are based on a wireframe depiction of modular robot
configurations and a substructure set resulting in a hierarchy
construction of initial and goal configurations. However, nei-
ther of them are parallel algorithms and many unnecessary
motions are involved. Nelson [17] used graphs to represent
modular robot configurations and the reconfiguration planning
is generated by updating the difference matrix. The PCA
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method and weighted bipartite graph assignment solutions are
used to determine the optimal graph matching. Both [16]
and [17] only consider single-DoF modules and multiple
ways of connections between two connectors are also not
considered.

Payne et al. [18] presented an algorithm for chain-type
modular robots but limited to reconfigure from an “I” shape
to a “T” shape. Asadpour et al. [19] developed an algorithm
for chain-type self-reconfigurable robots using guided search
methods with a heuristic function which is the combination of
a similarity metric and a depth variable between two configura-
tions, and the graph signature is computed for an isomorphism
test. However, this method is computationally slow because
the search space of configurations is extremely large. Hou
and Shen [20] presented configuration string to represent a
robot configuration. Common and different substructures are
detected and all different substructures can be reconfigured
into an intermediate structure and then into goal substructures.
However, the way to compare two configurations is with
respect to the center of graphs so that it is very likely to
not find common substructures, resulting in many redundant
reconfiguration steps. A graph-based optimal reconfiguration
planning approach [21] was developed later. The reconfig-
uration problem is converted into a distributed constraint
optimization problem (DCOP) which is solved by existing
DCOP algorithms whereas solving DCOP takes exponential
time. Thus a greedy algorithm was introduced to solve the
configuration matching problem but the optimal solution is
not guaranteed. All of these works require that all modules
are connected during the reconfiguration process due to the
limited motion capabilities of their hardware.

A configuration recognition algorithm using distributed in-
formation for modular robots was presented in [22]. A graph
representation for modular robots was presented, including the
definition of root module and connections. A matching and
mapping algorithm is developed for configuration recognition
by computing the maximum common subconfiguration (MCS)
with respect to root modules. This paper focuses on reconfig-
uration planning for modular robots which is based on these
fundamental concepts and the bottom-up algorithm to compute
MCS from [22]. An efficient configuration decomposition
algorithm is developed and a virtual module operation is
presented for further configuration decomposition until all
modules are mapped. Then distributed reconfiguration actions
can be derived from leaves to roots to ensure the locomotion
ability of the module involved.

III. HARDWARE PLATFORM

SMORES-EP (Self-assembly MOdular Robot for Extreme
Shape-shifting) is a modular robotic system first published
in [15]. SMORES-EP is the current version of the system
where EP refers to the Electro-Permanent magnets the module
uses for its connector [23]. [24] [25] have shown the ability
and applications of this modular robotic system and some
simple reconfiguration tasks were demonstrated.

Each module has four active rotational degrees of freedom
(pan, tilt and left/right wheels) and four connectors which are

Left

Right

Pan

Tilt

Fig. 1. A SMORES-EP module with four active rotational degrees of freedom
and four connectors using an array of electro-permanent (EP) magnets.

(a) (b)

Fig. 2. (a) Internal view of magnets in EP-Face. (b) Internal view of EP-Face
with circuit board.

equipped with an array of electro-permanent (EP) magnets
as illustrated in Fig. 1. These four degrees of freedom are
named LEFT DoF, RIGHT DoF, PAN DoF and TILT DoF for
convenience. In particular, LEFT DoF, RIGHT DoF and PAN
DoF can continuously rotate (no angular limits on rotation) to
produce a twist motion of docking ports relative to the rest
of the module, and TILT DoF is limited to ±90◦ to produce
a bending joint. LEFT DoF and RIGHT DoF can be used as
driving wheels which allows differential drive locomotion of
individual modules.

A SMORES-EP module can be considered as a cube with
four docking ports named LEFT Face, RIGHT Face, TOP
Face and BOTTOM Face for convenience. Each face of the
module can form a strong connection with other modules, or
with metal objects by the use of four EP magnets arranged
in a ring, with south poles counterclockwise of north shown
in Fig. 2. The ring arrangement of the magnets makes the
connector hermaphroditic, and able to connect in four possible
configurations. Also connected EP-Faces are able to exchange
data through the magnetic coupling of connected EP-magnets
which are capable of UART serial communication [23].

IV. PRELIMINARIES

The reconfiguration planning problem can be defined as
finding the sequence of actions to convert an arbitrary con-
figuration to another configuration. Graphs are concise repre-
sentations for modular robot configurations and readily allow
application of techniques from graph theory [26]. In particular,
a modular robot configuration can be represented as a graph
and each vertex of the graph represents a module and each
edge of the graph represents the connection between two
modules. Let G = (V,E) be an undirected graph, where V
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is the set of vertices of G representing the modules while E
is the set of edges of G representing the connections among
modules.

Graphs with only one path between each pair of vertices
are trees. Any acyclic graph is a tree. It is convenient to
treat the configurations as trees with manipulations on that
tree to obtain different configurations. If the initial and/or goal
configuration has loops, they can be converted into an acyclic
configuration by running a spanning tree algorithm. Therefore,
this work only focuses on configurations whose graphs are
acyclic.

Once a tree G = (V,E) is rooted with respect to a vertex
τ ∈ V , the parent of a vertex v ∈ V is the vertex connected
to it on the path to τ which is unique except for τ , and the
child of a vertex v ∈ V is a vertex of which v is the parent.
The configuration of a modular robot cluster is represented as
a rooted tree and the root has to be selected as the center of its
graph defined in [27]. A linear-time algorithm to find the root
of a given robot configuration is shown in [22]. The degree
of a vertex is the number of edges incident to the vertex and
a vertex of degree 1 is a leaf in the graph. The height of a
vertex in a rooted tree is the length of the longest path (away
from the root) to a leaf from that vertex and the height of the
root is the height of the tree.

A modular robot module usually has multiple connectors
and there may also be multiple ways to connect them. For
each connection between two modules, the involved faces and
orientations are meant to be considered.

Definition 1: A connection between module u’s connector
U Con and module v’s connector V Con with orientation Ori
is defined as

connect(u, v) ={Face : U Con,Face2Con : V Con,

Orientation : Ori} (1)

from module u’s point of view and

connect(v, u) ={Face : V Con,Face2Con : U Con,

Orientation : Ori} (2)

from module v’s point of view.
Each connection has three attributes: Face, Face2Con and

Orientation. For different designs of modular robots, some
seemingly different connections are actually equivalent. In
a SMORES-EP configuration, the connections among LEFT
Face, RIGHT Face and TOP Face with different Orientations
are actually equivalent. In contrast, for connections between
two BOTTOM Faces which cannot rotate, the orientation
needs to be considered (Orientation ∈ [0, 1]) shown in Fig 3.
The Orientation attribute can affect the configuration kinemat-
ics. In addition, the module is bilaterally symmetric, namely
LEFT Face or LEFT DoF is a mirror image of the RIGHT Face
or RIGHT DoF, so the connections between LEFT Face and
other docking ports are equivalent to the connections between
RIGHT Face and the same mated docking port, and all possible
connections by LEFT Face and RIGHT Face are equivalent.

(a) (b)

Fig. 3. Connection between two BOTTOM Faces: (a) Orientation is 0 and
(b) Orientation is 1.

(a)
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Fig. 4. (a) Three-Module Configuration and (b) Three-Module Configuration
Graph.

A three-module SMORES-EP configuration is shown in
Fig. 4. Here, the connections can be expressed as:

connect(1, 2) ={Face : TOP Face,

Face2Con : TOP Face,Orientation : Null}
connect(2, 3) ={Face : RIGHT Face,

Face2Con : LEFT Face,Orientation : Null}

and connect(2, 1) and connect(3, 2) are similar. In addition,
for this simple configuration, the root module is Module 2.

Given two modular robot configurations G1 = (V1, E1)
and G2 = (V2, E2), a common subconfiguration is defined
in [22], as well as a maximum common subconfiguration with
respect to v1 ∈ V1 and v2 ∈ V2 (denoted as MCS(v1, v2)).
An example is shown in Fig. 5. Given two graphs G1 and G2

rooted with respect to τ1 ∈ V1 and τ2 ∈ V2 respectively,
for module v1 ∈ V1 and v2 ∈ V2, we can construct a
common subconfiguration {G′1, G′2} where V ′1 = {v1, v̂1},
V ′2 = {v2, v̂2} under a subconfiguration mapping f ′ : V ′1 →
V ′2 such that f ′(v1) = v2 and f ′(v̂1) = v̂2 if and only
if connect(v1, v̂1) ∼= connect(v2, v̂2) which is called the
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Fig. 5. Two SMORES-EP configurations are shown. The subgraphs of (a)
and (b) circled by “- -” is an example of common subconfiguration with
mapping 1 → 1 and 0 → 2. The subgraphs of (a) and (b) circled by “—” is
MCS(1, 1) with mapping 1 → 1, 2 → 0 and 0 → 2.
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feasibility rule. This feasibility rule can be used to find
MCS(v1, v2) ∀v1 ∈ V1 and ∀v2 ∈ V2.

V. RECONFIGURATION PLANNING ALGORITHM

The self-reconfiguration planning problem can be stated as:
Given an arbitrary initial configuration and goal configuration,
find the actions required for the system to transform the
initial configuration to the goal configuration. Different atomic
reconfiguration actions can be defined for different modular
robotic systems. Usually there are two atomic reconfiguration
actions: Docking and Undocking. Docking means connect-
ing two connectors and Undocking means disconnecting an
existing connection. Different modular robots have different
procedures to execute these two atomic actions. In particular,
for SMORES-EP modular robotic system, a Docking action re-
quires two modules to move their involved connectors to be in
proximity, align these two faces and activate all corresponding
magnets. Similarly, an Undocking action requires two modules
to deactivate all magnets of both involved connectors.

An outline of the reconfiguration planning algorithm fol-
lows. The first step is to find the root module of the initial con-
figuration as in [22], and then figure out the root module of the
goal configuration. From here, a novel way to decompose the
initial configuration and the goal configuration into multiple
subconfigurations can be applied. These subconfigurations can
then be mapped between initial and goal configurations. This
mapping is computed by iteratively adding virtual modules
and virtual connections to these subconfigurations. After the
connection and disconnection actions are determined, the loco-
motion plans for modules to move to their required positions
to connect can then be implemented with standard 2D path
planning approaches. Commonly used nomenclature is listed
in the following table.

Gi Initial Configuration
Gg Goal Configuration
Ḡi Initial Subconfiguration in MCS
Ḡg Goal Subconfiguration in MCS

Ĝi Initial Subconfiguration not in MCS

Ĝg Goal Subconfiguration not in MCS
G′
i Initial Configuration after Virtual Module Operation

G′
g Goal Configuration after Virtual Module Operation
τi Initial Configuration Root Module
τg Goal Configuration Root Module
ταi αth Subconfiguration Root of Gi
τβg βth Subconfiguration Root of Gg
M Virtual Module

A. Configuration Decomposition

Given the initial and goal configurations, we first decompose
them into multiple subconfigurations. For efficiency, we want
the decomposition that shares the most connections (edges
in the graph) between initial and goal configurations. Re-
configuration actions (Docking and Undocking) are usually
hard to execute and also time-consuming. Hence, one goal
of the algorithm is to minimize the number of Docking and
Undocking actions. In addition, it is hard to change the height
of a vertex in the graph, for example, moving a module which

(a) (b)

Fig. 6. (a) Configuration decomposition for Gi = (Vi, Ei) and the
subconfiguration encircled by “- -” is Ĝi = (V̂i, Êi) and (b) configuration
decomposition for Gg = (Vg , Eg) and the subconfiguration encircled by “-
-” is Ĝg = (V̂g , Êg).

is a leaf vertex of a configuration to a position close to the
root requires more actions, so minimizing these changes will
make the physical reconfiguration more efficient as well.

Given any two modular robot configurations Gi = (Vi, Ei)
and Gg = (Vg, Eg), their root modules τi and τg can be com-
puted in O(|Vi|) or O(|Vg|) respectively, then MCS(τi, τg)
under mapping f : V̄i → V̄g where V̄i ⊆ Vi and
V̄g ⊆ Vg can be computed efficiently. These two subcon-
figurations Ḡi = (V̄i, Ēi) and Ḡg = (V̄g, Ēg) contained
in MCS(τi, τg) are isomorphic so that there is no need
to reconfigure these modules. If subtracting subconfigura-
tions Ḡi = (V̄i, Ēi) from Gi = (Vi, Ei) without keeping
boundaries, a graph Ĝi = (V̂i, Êi) composed of multiple
unconnected subgraphs is generated. Similar operations can
be applied to the goal configuration Gg = (Vg, Eg) to
generate Ĝg = (V̂g, Êg). The process is shown in Fig. 6
where Ĝi = {Ĝαi = (V̂ αi , Ê

α
i )|α = 0, 1, 2, · · · , n} and

Ĝg = {Ĝβg = (V̂ βg , Ê
β
g )|β = 0, 1, 2, · · · ,m}. This process is

defined as a configuration decomposition for Gi = (Vi, Ei)
and Gg = (Vg, Eg) with respect to the root module pair
τi and τg written as CD(Gi, τi, Gg, τg). This configuration
decomposition can be finished in time O(|Vi|2) or O(|Ei|2)
and, in reality, a SMORES-EP module has only 4 connectors
so the time for a large number of modules should be much
smaller than the worst case [22].

B. Module Mapping

Applying configuration decomposition for the initial and
goal configurations Gi = (Vi, Ei) and Gg = (Vg, Eg), mod-
ules involved in MCS(τi, τg) are mapped under f : V̄i → V̄g
where V̄i ⊆ Vi and V̄g ⊆ Vg , so Ĝi = (V̂i, Êi) and
Ĝg = (V̂g, Êg) can be generated respectively, both of which
are composed of multiple subconfigurations. The connection
between Ḡi = (V̄i, Ēi) and subconfiguration Ĝαi = (V̂ αi , Ê

α
i )

in Ĝi = (V̂i, Êi) for α = 0, 1, · · · , n is denoted as
connect(u, ταi ) where u ∈ V̄i and ταi ∈ V̂ αi . The vertex ταi is
called the subconfiguration root for Gi = (Vi, Ei) and there
are n subconfiguration roots in total. Similarly there are m
subconfiguration roots for Gg = (Vg, Eg) denoted as τβg where
β = 0, 1, · · · ,m.

We can then replace Ḡi = (V̄i, Ēi) with a virtual module
M and replace connect(u, ταi ) with a virtual connection
connect(M, ταi ) defined as

connect(M, v) ={Face : Null,Face2Con : Null,

Orientation : Null} (3)
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(a) (b)

Fig. 7. Replace Ḡi = (V̄i, Ēi) with virtual module M and replace
connections between Ḡi = (V̄i, Ēi) and every Ĝαi = (V̂ αi , Ê

α
i ) with virtual

connections.

All virtual connections are equivalent. The new corresponding
modular robot configuration with a virtual module and some
virtual connections is written as G′i = (V ′i , E

′
i) where V ′i =

Vi \ V̄i ∪ {M} as shown in Fig. 7. We call this operation the
Virtual Module Operation.

These procedures can be applied to the goal configuration
Gg = (Vg, Eg) and the corresponding G′g = (V ′g , E

′
g) is gener-

ated. Applying configuration decomposition on G′i = (V ′i , E
′
i)

and G′g = (V ′g , E
′
g) with respect to virtual module Mi and

Mg , MCS(Mi,Mg) under mapping f : V̄ ′i → V̄ ′g where
V̄ ′i ⊆ V ′i and V̄ ′g ⊆ V ′g can be computed. The solution
to MCS(Mi,Mg) may not be unique. In addition to these
two virtual modules, each vertex u ∈ V̄ ′i is mapped to a
unique module v ∈ V̄ ′g . After configuration decomposition
CD(G′i,Mi, G

′
g,Mg), Ĝ′i = (V̂ ′i , Ê

′
i) and Ĝ′g = (V̂ ′g , Ê

′
g)

are generated respectively. We can repeat the virtual module
operation for Ĝ′i = (V̂ ′i , Ê

′
i) and Ĝ′g = (V̂ ′g , Ê

′
g) and two new

modular robot configurations with virtual modules and virtual
connections are generated.

Mapping is completed by repeating this process until every
module in Vi has been mapped with a unique module in
Vg . If we assume configuration decomposition is applied N
times, then N mappings f1, f2, · · · , fN are computed in order.
This mapping process maintains the vertex height between
configurations as much as possible and also keeps most of the
common topology connections so that fewer reconfiguration
actions are needed. For the worst case, the mapping process
has to do configuration decomposition d|Vi|/2e+ 1 times (at
least two modules can be mapped after each configuration
decomposition except for the first and the last configuration
decomposition and dxe maps x to the least integer greater than
or equal to x), so the time complexity is O(|Vi|3). Again, for
a large number of modules, in reality the mapping process
should be much faster than the worst case.

C. Reconfiguration Actions

Once the mapping process is done, corresponding recon-
figuration actions can be determined. Assume there are N
mappings ft : tVi → tVg , t = 1, 2, · · · , N computed
in order, then a mapping f : Vi → Vg that maps all
modules from the initial configuration Gi = (Vi, Ei) to the
goal configuration Gg = (Vg, Eg) can be obtained by the
combination of these mappings while excluding virtual module
mapping (Mi →Mg). This mapping is one-to-one and onto
and the inverse of the mapping is f−1 : Vg → Vi. Thus the

reconfiguration actions can be computed by iterating modules
in Gi = (Vi, Ei) from leaves to the root.

For a modular robot configuration G = (V,E) rooted at
τ , for any vertex v ∈ V with depth d(v) > 0, we denote its
parent connected via its connector c as ṽc and the mating
connector of ṽc as c̃. Given the mapping f : Vi → Vg ,
each vi ∈ Vi is mapped to a unique vg ∈ Vg , and ṽcii and
ṽ
cg
g are their parents respectively. Similarly, with the inverse

mapping f−1 : Vg → Vi, ṽ
cg
g ∈ Vg is also mapped to

a unique v′i ∈ Vi. If module pair (vi, vg) and (ṽcii , ṽ
cg
g )

are in any MCS during the module mapping process, then
connect(vi, ṽ

ci
i ) ∼= connect(vg, ṽ

cg
g ) and there is no need

to reconfigure. Otherwise, the reconfiguration actions are un-
docking vi from ṽcii by removing connect(vi, ṽ

ci
i ) and docking

vi with v′i by constructing connect(vi, v
′
i)

Once all modules except subconfiguration roots for Gi =
(Vi, Ei) and modules in MCS(τi, τg) are visited, Ĝi =
(V̂i, Êi) has reconfigured into Ĝg = (V̂g, Êg) by executing
reconfiguration actions from leaves to subconfiguration roots.
This enables us to pick one solution to MCS(Mi,Mg) in
the module mapping process freely since the module must be
free to maneuver when a reconfiguration action is applied.
We then execute the Matching and Mapping algorithm in [22]
to check if the new configuration is isomorphic to the goal
configuration. If not, we continue iterating unvisited modules
and executing reconfiguration actions. This process can be
done in time O(|Vi|).

D. Hardware Execution

To implement the reconfiguration plan described above
with SMORES-EP, modules must undock from their initial
positions in the current configuration, safely navigate them to
their final positions in the goal configuration, and then dock
to the appropriate modules.

The environment in which the modules will reconfigure
can be described with a discrete representation. The graph
representation of the environment, and the reconfiguration
plan, can then be used to sequentially generate trajectories that
safely navigate the modules to their new reconfigured positions
in the goal configuration. These trajectories can be generated
through graph search techniques such as A∗ [28].

When generating the trajectory for each module, the mod-
ules not involved in the current reconfiguration action will
be represented as static obstacles in the discrete environment.
It may be the case that the current reconfiguration action
requires the motion of other modules to create appropriate
free-space. Given the full discrete environment and system
state knowledge, a state machine can be used to identify when
additional free-space is required, and initiate the motion of the
occluding modules to enable the current reconfiguration action.

Since locomotion on the ground is achieved by rotating the
LEFT and RIGHT Faces, aligning the orientation of that face
with a stationary mating face could be problematic since their
orientation is coupled to translation. When a mobile module
is docking to a stationary one, if the face on the stationary
module is a LEFT, RIGHT or TOP face, the stationary face
can rotate to align the orientation appropriately. There are
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Helping Module

Helping ModuleHelping Module

Fig. 8. A helping module docks with Module 1 BOTTOM Face and lifts it
up so that LEFT Face of Module 1 can be aligned with BOTTOM Face of
Module 2, then carry Module 1 to the location to finish the docking action.

(a) (b)

Fig. 9. Reconfigure a walker configuration (a) into a mobile vehicle with an
arm configuration (b) with eleven SMORES-EP modules involved.

two special docking action cases in which this cannot be
done: 1. Dock either a LEFT Face or a RIGHT Face with
a mating BOTTOM Face and 2. Dock BOTTOM Face with
a mating BOTTOM Face with Orientation attribute being
1. In these cases, the BOTTOM Face cannot rotate as the
SMORES-EP modules have fixed BOTTOM faces. For these
two cases, we utilize a helping module. A helping module is
also a SMORES-EP module with some payload attached to
its BOTTOM Face. The helping module can dock with and
lift the mobile module so that the face is no longer coupled
with the ground and can be orientated appropriately. A demo
of this behavior is shown in Fig. 8.

VI. EXPERIMENTS

A ROS package for reconfiguration planning of SMORES-
EP modules has been developed, which includes the reconfig-
uration planning algorithm, high-level mobile robot controller
and low-level SMORES-EP module controller. This package
is used to demonstrate three reconfiguration tasks.

1) Task 1 — Walker→ Mobile Manipulator: Reconfigure a
cluster of SMORES-EP modules from a walker (Fig. 9a) into
a mobile vehicle with an arm (Fig. 9b) with eleven modules.

The initial and goal graph representations are shown in
Fig. 10 where τi is Module 1 and τg is Module 1 respectively.
For Gi = (Vi, Ei) and Gg = (Vg, Eg), MCS(τi, τg) only
contains two modules under mapping 1→ 1 and 3→ 8. The
result of the virtual module operation is shown in Fig. 11. In
addition to some equivalent virtual connections, there are two
common connections in MCS(M,M).

The rest of module mapping process is shown in Fig. 12 and
Fig. 13. There are only virtual connections in MCS(M,M),
each of which requires reconfiguration actions.
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Fig. 10. (a) Graph representation of walker configuration and (b) graph
representation of mobile manipulator configuration. MCS(1, 1) is encircled
by “—” under mapping 1 → 1 and 3 → 8. After removing MCS(1, 1), there
are three unconnected subgraphs in both the current initial configuration and
goal configuration which are encircled by “- -”.
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Fig. 11. (a) New graph representation of walker configuration and (b) new
graph representation of mobile manipulator configuration. MCS(M,M) is
encircled by “—” under mapping M → M, 9 → 5, 8 → 3, 2 → 9, 11 → 4
and 10 → 2. After removing MCS(M,M), there are two unconnected
subgraphs in the current initial configuration and three unconnected subgraphs
in the current goal configuration which are encircled by “- -”.
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Fig. 12. MCS(M,M) is encircled by “—” under mapping M → M,
4 → 6 and 6 → 10. After removing MCS(M,M), there are two
unconnected subgraphs in both the current initial configuration and current
goal configuration which are encircled by “- -”.
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Fig. 13. MCS(M,M) is encircled by “—” under mapping M → M,
5 → 7 and 7 → 11.

The final mapping is f : Vi → Vg is 1→ 1, 3→ 8, 9→ 5,
8 → 3, 2 → 9, 11 → 4, 10 → 2, 4 → 6, 6 → 10, 5 → 7
and 7→ 11 and the corresponding reconfiguration actions are
shown in Table I.

The hardware execution of this plan is shown in Fig. 14. A
VICON motion capture system is used to track the poses of
modules. First, Module 6 and Module 7 have to move away so
that Module 5 can move to dock with Module 8. Then Module
7 moves to dock with BOTTOM Face of Module 6, Module
4 undocks from Module 2 and moves to dock with Module
10. Finally Module 6 moves to dock with Module 2 followed
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TABLE I
RECONFIGURATION ACTIONS FOR TASK 1

Action ID Face ID Face Orientation
Undock 5 TOP Face 4 TOP Face Null
Dock 5 TOP Face 8 BOTTOM Face Null

Undock 7 TOP Face 6 TOP Face Null
Dock 7 TOP Face 6 BOTTOM Face Null

Undock 4 LEFT Face 2 LEFT Face Null
Dock 4 TOP Face 10 BOTTOM Face Null

Undock 6 RIGHT Face 2 RIGHT Face Null
Dock 6 TOP Face 2 BOTTOM Face Null

Fig. 14. SMORES-EP hardware reconfiguration from a walker to a mobile
vehicle with an arm.

TABLE II
VERTEX HEIGHT OF MODULES IN Gi(Vi, Ei) AND Gg(Vg , Eg)

v 1 2 3 4 5 6 7 8 9 10 11
h(v) in Gi 3 2 2 1 0 1 0 1 0 1 0
h(v) in Gg 3 2 4 0 0 1 0 1 0 1 0

by module 7. Now Ĝg = (V̂g, Êg) is formed and we run
the Matching and Mapping algorithm which shows that this
configuration is isomorphic to Gg = (Vg, Eg) and no further
reconfiguration actions are needed. Table II shows how the
vertex height of each module changes after the reconfiguration
actions and, for those modules which need to execute actions,
their heights have no change except for Module 4.

2) Task 2 — Driver → Snake: Reconfigure a cluster of
SMORES-EP modules from a driver (Fig. 15a) into a snake
(Fig. 15b) with seven modules.

The initial and goal graph representations are shown in
Fig. 16 where τi is Module 4 and τg is Module 4 respectively.
MCS(τi, τg) is empty. A virtual module M and a virtual
connection (M, τi) are added to Gi and a similar operation
is applied to Gg . Then MCS(M,M) is under mapping
M → M and 4 → 4 which can be removed for further
configuration decomposition. The final mapping between these
two configurations is f : Vi → Vg is 1 → 7, 2 → 5, 3 → 6,
4 → 4, 5 → 3, 6 → 2 and 7 → 1 and the corresponding
reconfiguration actions are shown in Table III.

(a) (b)

Fig. 15. Reconfigure a driver configuration (a) into a snake configuration (b)
with seven SMORES-EP modules involved.
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Fig. 16. (a) Graph Representation of Driver Configuration and (b) Graph
Representation of Snake Configuration.

TABLE III
RECONFIGURATION ACTIONS FOR TASK 2

Action ID Face ID Face Orientation
Undock 1 BOTTOM Face 2 TOP Face Null
Dock 1 TOP Face 3 BOTTOM Face Null

Undock 7 TOP Face 5 BOTTOM Face Null
Dock 7 BOTTOM Face 6 TOP Face Null

Undock 2 RIGHT Face 4 LEFT Face Null
Dock 2 TOP Face 4 BOTTOM Face Null

Undock 5 LEFT Face 4 RIGHT Face Null
Dock 5 BOTTOM Face 4 TOP Face Null

3) Task 3 — Omni-Driver → Mobile Observer: Reconfig-
ure a cluster of SMORES-EP modules from a omni-driver
(Fig. 17a) into a mobile observer (Fig. 17b) with nine modules.

The initial and goal graph representations are shown in
Fig. 18 where τi is Module 1 and τg is Module 1 respectively.
MCS(τi, τg) is under mapping 1→ 1, 2→ 8 and 3→ 9 which
can be maintained during the reconfiguration process. The final
mapping for other modules is 4 → 2, 5 → 5, 6 → 4, 7 → 6,
8 → 3 and 9 → 7, and the corresponding reconfiguration
actions are shown in Table IV.

(a) (b)

Fig. 17. Reconfigure a omni-driver configuration (a) into a mobile observer
configuration (b) with nine SMORES-EP modules involved.
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Fig. 18. (a) Graph Representation of Omni-Driver Configuration and (b)
Graph Representation of Mobile Observer Configuration.

TABLE IV
RECONFIGURATION ACTIONS FOR TASK 3

Action ID Face ID Face Orientation
Undock 7 TOP Face 6 BOTTOM Face Null
Dock 7 BOTTOM Face 8 TOP Face Null

Undock 8 TOP Face 1 LEFT Face Null
Dock 8 LEFT Face 1 RIGHT Face Null

Undock 4 TOP Face 1 RIGHT Face Null
Dock 4 RIGHT Face 1 LEFT Face Null

Undock 6 TOP Face 1 BOTTOM Face Null
Dock 6 BOTTOM Face 4 TOP Face Null

VII. CONCLUSION

In this paper, we present a new reconfiguration algorithm for
modular robots. Graph representations of modular robot con-
figurations are used and, based on our previous work, an effi-
cient algorithm is developed to do configuration decomposition
iteratively by adding virtual modules and virtual connections.
Each module in the initial configuration is mapped to a module
in the goal configurations with which reconfiguration actions
can be computed. A helping module is designed to handle
special reconfiguration actions. This algorithm is demonstrated
with SMORES-EP hardware to show its effectiveness.

Future work will focus on shape morphing for complicated
3D structures so that a planar configuration can become an
intermediate state between any two 3D configurations and this
reconfiguration algorithm can be used to achieve chain-type or
lattice-type reconfiguration motions.
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