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Abstract— This paper introduces a new class of self-
reconfigurable robot: the variable topology truss (VTT). Re-
lated to an existing class of robots, the variable geometry truss
(VGT), variable topology trusses have the additional capability
to change the topology of the truss through self-reconfiguration.
The hardware necessary to achieve this is introduced, and
the constraints and capabilities of this new type of robot are
analyzed by introducing the concept of a topology neighbor
graph. Lastly, the minimal reconfigurable VTTs, which require
18 members, are identified and their achievable topologies are
enumerated.

I. INTRODUCTION

In many applications, trusses are ideal due to their high
structural efficiency, as they consist of members which are
only in pure tension or compression, resulting in reduced
maximum stress [1]. The class of robots commonly known
as variable geometry trusses (VGTs) can be obtained by
replacing some or all of the members in a truss with linear
actuators [2]. There are many applications for this type of
robot, including parallel manipulators, long chain actuators,
collapsible structures, and locomotion platforms.

A variable topology truss (VTT) starts from the same truss
framework as a VGT: linear actuators form the members
(beam elements in the truss) and passive spherical joints
connect the members at the nodes in the truss. However,
the truss has the additional capability to self-reconfigure,
changing its topology by merging or splitting nodes. That
is, two separate nodes in the truss can dock to form one
single node which connects all of the involved members.
Similarly, a single node with a sufficient amount of members
can undock into a pair of nodes. In this way, a VTT can
be thought of as a chain type self-reconfigurable robot [3]
consisting only of linearly actuated elements and unactuated
spherical joints.

While VGTs only have control over the shape or geometry
of the truss, a VTT can additionally change the topology of
the underlying truss. This brings benefits typically associated
with reconfigurable robots; the VTT can select the topology
which is most suited to the task at hand. For example, a single
VTT may have the capability to self-reconfigure for many
applications: a collapsible topology for storage, a dynamic
rolling gait topology for locomotion, and a topology with
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Fig. 1: A tower and dome configuration each with 51 members. We are
interested in determining whether it is possible to reconfigure from one to
the other.

a large workspace for manipulation. This task flexibility is
not possible with the single fixed topology of a VGT. An
example of two structures which might be realizable from
one system is shown in Fig. 1.

The additional reconfigurability of a VTT could have
applications in space missions as a lightweight adaptable
structure, or as versatile structural reinforcement to assist
first responders during disaster scenarios. Our previous work
[4] explores the challenges of the latter application using an
earlier VTT concept.

II. BACKGROUND

The Stewart platform is one example of a VGT; it can be
thought of as an octahedral truss with six actuated members
[2]. Rhodes and Mikulas investigated the use of VGTs as a
collapsable, controllable beam for space applications [5]. The
Tetrobot system is another example of VGT with a variety
of configurations, including a six legged walker [6]. Lee
and Sanderson presented dynamic rolling locomotion with
an icosahedral Tetrobot [7]. The dynamics and control of
general VGTs have been studied as well [8].

Arun et. al. claim to enumerate all possible VGTs [2] by
constructing them from basic unit cells. Arun specifies that
VGTs must be statically determinate and composed of con-
vex polyhedral cells, however, this criteria is too restrictive,
as it eliminates many interesting structures. For example,
the complete bipartite graph K5,5 is generically rigid in 3D
space, [9] but is neither statically determinate nor composed
of polyhedral cells. By removing a single edge, it can be
made statically determinate, yet it is still not composed of
polyhedral cells. The only criteria we specify for a VTT in
this paper is that the truss is a rigid framework. We consider
all suitably rigid bar and joint structures, including statically
indeterminate ones. Statically indeterminate structures are
necessary to admit reconfiguration of the truss; a statically
determinate truss becomes overdetermined after merging two
nodes.
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Fig. 2: Spiral Zipper, with an extension ratio of 14:1, arbitrarily large
extension ratios are possible.

A critical design parameter in improving the usefulness
of VGT type systems is the range of motion of the pris-
matic joints. In the past work referenced above, all of the
actuators were standard single stage linear actuators with
an extension/compression ratio of less than 2. Larger ratios
will allow the systems to have larger workspaces or smaller
storage volumes as well as higher dexterity over these larger
workspaces.

III. MECHANICAL DESIGN AND VALIDATION

VGTs and VTTs achieve geometric shape change by
actuating member lengths. In a truss with variable member
lengths, the nodes must consist of passive revolute joints.
In the case of a VTT, where nodes may merge or split, the
nodes must also be chainable to support the connection and
disconnection of an arbitrary number of members at a single
node.

A. Active Prismatic Joint
The ideal prismatic joint is one with large a exten-

sion/compression ratio. Collins and Yim have developed such
an actuator called the Spiral Zipper shown in Fig. 2 [10].

The Spiral Zipper operates both as a prismatic actuator
and a structural component. It extends and retracts a rigid,
lightweight tube by nesting the features in the top of a band
to the matching features on the bottom. The extension ratio
is only limited in principle by the amount of stored band and
the material strength. The band forms a circular tube which is
the optimal shape for stiffness to weight ratio under buckling
loads, the most likely mode of failure for slender truss beams.
The zipping feature interface is strongest in compression,
although it can support small torsions and moments. To
support tension, the actuator will have a reinforcing winched
cable on the inside of the tube (not shown). Experimentally,
we have shown strength to weight ratios of approximately
10:1 for a prismatic actuator capable of extending 1m with
a plastic band. Spiral Zipper tubes made of acetal plastic,
1.5m long, have been shown to support 530N. We have
also shown the tube can be extended as fast as 0.45m/s.
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Fig. 3: VTT joint features. Maximum, intermediate, and minimum joint
positions are shown. The latching mechanism is not shown.

B. Passive Chainable Spherical Joints

To maintain the advantageous decoupling of moments
and forces, the system needs passive spherical joints at the
nodes of the truss. The joints should satisfy the following
requirements:

1) The position of the endpoints of the truss members
joined at a node should be coincident, but the members
should have three degrees of rotational freedom about
the node center.

2) The node must be able to constrain an arbitrary number
of truss members. The number of members at a node
may change during topological reconfiguration.

3) The nodes must minimize interference between mem-
bers as the angles between members change.

To satisfy the first condition in practice, the truss members
themselves do not need to physically occupy the node center
as long as they share a common center of rotation. Universal
joints and spherical ball joints are typical candidates for
a truss node, however they are not chainable to support
merging of nodes. Instead, a spherical link chain, made up
of links of revolute joints which rotate about the node center,
can provide this behavior [11].

A mechanism similar to a concentric multilink spherical
(CMS) joint first developed by Hamlin [12] for the Tetrobot
Modular Robot satisfies the design, in particular minimizing
interference. To provide the ability to attach and detach
multiple joints at a single node, which was not part of the
CMS joint, development of a male and female connection
point and a latch mechanism was implemented. We call this
type of spherical linkage a VVT joint; it is illustrated in Fig. 3.

The VTT joint is characterized by an offset planar hinge
that forms a six-bar linkage. There are six components and
seven pin joints that make up the spherical joint. A male
connector and Spiral Zipper attachment are integrated into
one linkage point, and a female connector and latch are
integrated into a second linkage point. The joint is designed
such that the links will slide next to each other to allow
folding of the linkage. 2D planar movement of the joint is
illustrated in Fig. 3. When the joint is fully closed to its
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Fig. 4: Chaining of three VTT joints. The truss members are constrained to
move over a virtual sphere about the virtual center.

minimized position, the angle between the male and female
connection points is 20◦. When the joint is opened to its
maximized position, the angle is 180◦.

The center of rotation for the VTT joint linkage is the
node center. As more VTT joints are added to the chain,
they all share the same center of rotation (Fig. 4).

The latching mechanism is designed to be similar to
steering wheel quick connect devices. The female connec-
tion point on each joint will incorporate a passive latching
mechanism that will hold the male connector from a mating
joint into position. Engagement/disengagement of the male
connector will occur when the joint containing the female
connector is in its fully opened position (180◦). In this
position, a male connector can be inserted or removed from
the female connector of the adjoining joint. Once the joint
angle is decreased below 180◦, the male connector and
female connector will remain latched. An exploded view of
the passive latching mechanism is shown in Fig. 5.

Each edge module in the truss consists of an active pris-
matic joint and two passive VTT joints. When the endpoints
of multiple edge modules are brought together, the spherical
joints can mate to form a chain of arbitrary length with a
free male connector and female connector at either end of
the chain. This design allows an arbitrary number of edge
modules to be connected at a single point, which corresponds
to a single node in the truss. In the same way, two nodes can
be brought together and the chains of joints can be appended,
forming a single long chain that suitably constrains all of the
edge modules.

C. Hardware Prototype

A demonstration of the capability of the spherical joints
to connect and disconnect passively for truss reconfiguration
was performed (Fig. 6). The demonstration mimics the merg-
ing of two nodes corresponding to tetrahedral components of
a truss. The exterior of the truss was made from stock 80/20
material, the tetrahedra from Spiral Zippers [10] connected
by VTT joints. The upper tetrahedron was fixed, and joystick
control was used to maneuver the lower tetrahedron into
position and to merge the two nodes into a single node as

Fig. 5: Exploded view of the female connector latch mechanism

Fig. 6: Full test setup.

shown in Fig. 7. Similarly, the splitting capabilities of the
VTT joints were also tested.

IV. ROBOT TOPOLOGICAL ANALYSIS

A VTT has the capability to change from one truss
topology to another. Yet there are limitations on which
topologies can be reached by a given VTT. For example,
trusses (a) and (b) shown in Fig. 10 have the same number
of nodes and members, but there is no way to reconfigure
from one into the other. This section will discuss the rules
which govern which reconfiguration actions are possible.

A. Robot Configuration and Topology

We give the term configuration the standard definition in
robotics: a set of parameters which describes the complete
specification of all of the points in a system. A VTT consists
of some fixed number of edge modules, so the configuration
must encode both the spatial locations of all of the members
as well as a description of how the members are connected
to one another. We call this description of the connections
between the members the connectivity of the truss. The
natural choice to describe the connectivity is a simple graph
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Fig. 7: (a) Test setup prior to docking. Note the separation of the lower
VTT node with the upper VTT node. The male connector is marked in red,
and the female connector is marked in yellow. (b) Test setup post docking.
Note the two nodes have joined together passively.

with labeled edges, with each graph edge corresponding to a
truss member. Then, to fully specify the physical locations of
the members, one choice is to provide an embedding of this
graph, which is a specification of the point in 3D space of
each node in the graph. This choice eliminates the ambiguity
between multiple solutions that can arise from a specification
of member lengths, for example.

When performing high level planning and design, we often
would like to disregard the labels from the labeled graph
representation of the connectivity. This yields the topology of
the truss, which is an isomorphism class of truss connectivity.
The truss topology can be represented by an unlabeled
graph. In other words, two trusses are said to have the same
topology if there is a graph isomorphism between their graph
representations. The truss topology provides the most general
specification that corresponds to the tasks a particular robot
configuration is suited to perform.

We call the motion which only moves the position of
the nodes a geometric reconfiguration, and a motion which
merges or splits nodes a topological reconfiguration. Topo-
logical reconfigurations necessarily change the number of
nodes in the graph representation, but the total number
of edges must remain the same. The edges correspond to
physical actuators; they cannot vanish or reappear, nor can
two actuators occupy the same location. Consequently, nodes
which are first or second degree neighbors cannot merge. If
first degree neighbors in a graph were to combine, the edge
between them would be deleted. Similarly, if second degree
neighbors were to combine, two edges would collapse to a
single edge. Therefore the valid list of node merges for a
given connectivity is restricted to the list of third or greater
degree neighbors.

B. Rigidity

A VTT is required to be a rigid structure to maintain its
shape. In order to maintain controllability of every node on a
VTT robot, it is necessary for the truss to satisfy the stronger
condition of infinitesimally rigidity. Infinitesimal rigidity is
the property that no infinitesimal motions can be assigned

to the nodes of the truss without violating the distance
constraints imposed by the member lengths, aside from the
motions that correspond to the six degrees of freedom of a
rigid body [13]. However, infinitesimal rigidity is a property
that depends on the specific embedding of the graph. A
more general property is generic rigidity, a property of the
topology alone. A generically rigid graph is rigid “almost
everywhere,” and if it is rigid in one configuration, it is rigid
in some neighborhood of that configuration [13]. Similarly,
a graph which is generically non-rigid will be flexible
“almost everywhere.” There may be configurations where
a generically rigid graph becomes infinitesimally flexible,
and these correspond to singularity configurations of a VTT.
Fig. 8 gives one such example in 2D space.

In 2D, there are combinatorial methods for determining
whether a graph is generically rigid. Finding a combinatorial
method for 3D frameworks is still an open problem in rigidity
theory. In this paper, we use the fact that if a graph has at
least one infinitesimally rigid configuration, then the graph is
generically rigid. An embedding is assigned to a graph, and
infinitesimal rigidity is checked. If the graph is not infinites-
imally rigid, then the embedding is perturbed to ensure it
is not in a singularity position. Since generic (non-singular)
configurations occur “almost everywhere,” this method works
well in practice.

(a) (b)

Fig. 8: An example of a generically rigid graph in 2D. Configuration (a) is
infinitesimally rigid, and all nearby configurations are also infinitesimally
rigid. Configuration (b) is a singular configuration which is not infinitesi-
mally rigid. Although no nodes can move a finite distance without violating
distance constraints, an infinitesimal motion in the vertical direction can be
applied to the bottom center node.

Since topologies which are not generically rigid have no
infinitesimally rigid configurations, these topologies must
be avoided during topological reconfiguration. Any merging
or splitting of nodes must preserve the generic rigidity of
structure. Additionally, singular configurations of generically
rigid configurations must be avoided during geometric recon-
figuration.

C. Truss Topology Neighbor Graphs

To describe the reconfiguration capability of a VTT, we
introduce the topology neighbor graph of a VTT. Each node
in the topology neighbor graph represents a unique truss
topology. Two nodes are connected if a single topological
reconfiguration step takes a configuration in the first topology
to a configuration in the second topology. An example of a
topology neighbor graph for a truss that can reconfigure to
form three topologies is shown in Fig. 9.

The topology neighbor graph for a truss can be generated
by starting with some initial topology and successively ap-
plying all admissible topological reconfigurations. Admissi-
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Fig. 9: An example of a topology neighbor graph for an 18 member VTT.
The left truss (1), an octahedron with two interior tetrahedral cells, can
merge its nodes to form the center truss (2). This truss can split the center
node in a topologically distinct way, which is shown on the right (3).
The topology neighbor graph shown below the trusses encapsulates this
information: topologies 1 and 3 are neighbors to topology 2 but not to each
other.

ble node merges must preserve the number of members in the
truss, so the possible merges are limited to all pairs of third
degree or higher node neighbors in the truss. Admissible
merges and splits must also preserve generic rigidity of
the truss. After applying a valid topological reconfiguration,
the resulting truss connectivity is checked for isomorphism
with all of the existing topologies in the neighbor graph.
New topologies are added as nodes to the graph, and the
graph is fully explored when all reconfiguration options are
exhausted. Fig. 10 shows two more complicated examples of
VTTs and their associated topology neighbor graphs.
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Fig. 10: Two 21 member VTTs and their associated topology neighbor
graphs. The black box shows the location of the pictured topology in the
neighbor graph. The neighbor graph of truss (a) has 111 topologies, while
the neighbor graph of truss (b) has 165 topologies.

The topology neighbor graph can also be thought of as
a single connected component in the topology neighbor
supergraph, which describes the relationship between all
truss topologies. Given start and goal truss configurations,
the topology neighbor graph can be used to quickly eliminate
potentially impossible goal configurations. If the topology of
the goal configuration does not lie in the same connected
component as the topology of the start configuration, then
there is no path through configuration space which connects
the start and goal configurations. However, these graphs do

not consider self-collisions or actuator constraints, so the
existence of a path through the neighbor graph does not
guarantee that a path through configuration space exists.

V. SMALLEST RECONFIGURABLE TRUSSES

From the restrictions on reconfiguration, we can determine
the minimal reconfigurable trusses.

Theorem 1: A minimum of 18 members are necessary to
admit reconfiguration in a VTT.

Proof: Since topological reconfiguration steps are
reversible, any reconfigurable VTT must have some con-
figuration which is capable of merging two nodes. One
necessary condition for generic rigidity in 3D is that the
graph representation of the truss must have a minimum
vertex degree of three or more (with the exception of the
special cases of a single bar and single triangle). Since the
two merging nodes must be no closer than third degree
neighbors, each of the merging nodes must have three
unshared neighbors to satisfy rigidity. Therefore the total
number of nodes in this configuration is at least eight. A
second necessary condition for generic rigidity in 3D is the
following constraint inequality:

M ≥ 3N − 6 (1)

where M is the number of members and N is the number
of nodes. This relates the number of position constraints
imposed by the members and the degrees of freedom of the
nodes. In a minimally rigid structure, the removal of any
member results in flexibility. These structures are statically
determinate, and the above inequality becomes an equality.
With 8 nodes, M ≥ 18, therefore the minimum number of
truss members required to admit reconfiguration is 18.

With 18 members, only trusses with 7 or 8 nodes are
possible, since the complete graph with 6 nodes only contains
15 members, and a truss of 9 nodes would violate the
constraint inequality. There are five non-isomorphic graphs
with 7 nodes and 18 edges [14], and they are pictured in
Fig. 11. All of them are generically rigid in 3D. One of
the five graphs (Fig. 11 (1)) corresponds to the complete
graph with 6 nodes with one additional node connected by
three edges. This graph is incapable of splitting any node
without losing generic rigidity. The remaining four graphs
correspond to the four 18 member VTTs which are capable
of topological reconfiguration.

1: 2:

3: 4: 5:

Fig. 11: The five topologies with 7 nodes and 18 members.

Fig. 12 shows the topology neighbor graphs of the five
trusses. They form five separate connected components,
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Fig. 12: The topology neighbor graphs of the five topologies with 7 nodes
and 18 edges, where numbers 1–5 above correspond to numbers 1–5 in
Fig. 11. They form five connected components.

which implies none of these trusses can reconfigure into
any of the other four. The fourteen additional nodes (6–
19) represent the topologically unique trusses that can be
obtained by splitting nodes from the 18 member and 7
node trusses. There are 663 non-isomorphic graphs with 8
nodes and 18 members [14]. All but the fourteen shown
must be either non-rigid or isolated topologies incapable of
reconfiguration.

VI. LARGER RECONFIGURABLE TRUSSES

A similar process can be applied for 19 and 20 mem-
ber structures. There are two non-isomorphic 19 member
topologies with 7 nodes, each of which neighbor three 8
node topologies. There is only one isomorphism class of
20 member topologies with 7 nodes, and it neighbors two
8 node topologies. With 21 members, rigid 9 node graphs
become possible, and the connected components begin to
exhibit more interesting organization. Fig. 10 shows two such
examples. There is only one graph with 7 nodes and 21
edges: the complete 7 node graph, which neighbors one 8
node graph. This 8 node graph cannot reconfigure further, so
all other reconfigurable trusses with 21, 22, or 23 members
involve merges and splits between 8 and 9 node graphs.

Rigid 10 node graphs become possible with 24 members,
and again there is a jump in complexity of the topology
neighbor graphs. The maximum size of the topology neigh-
bor graphs increases rapidly with the maximum number of
nodes in the truss. Fig. 13 gives an example of a VTT with
24 members and 10 nodes, here, computing the complete
connected component is computationally intractable.

VII. CONCLUSION

Variable topology trusses are a novel extension to the class
of robots known as variable geometry trusses. The ability to
topologically reconfigure expands the capabilities of particu-
lar trusses. Constraints on reconfiguration and the allowable
truss topologies were introduced, leading to the derivation
of the minimum number of members in a truss required to
admit topological reconfiguration. By exhaustively exploring
reconfiguration options, the relationship between all of the
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Fig. 13: A 24 member VTT and a subset of the associated topology neighbor
graph. The graph generation program was stopped after an hour of execution.
The subset contains over 10,000 topologies.

topologically distinct reconfigurable structures for 18, 19,
and 20 members were characterized.

Future work includes performing a comprehensive study
of structures with more members, and identifying promising
configurations for common robotics tasks. The motion and
reconfiguration planning problems for VTTs also need to be
developed. We suspect that topological reconfiguration can
be used to move past singular configurations, expanding the
workspace of VTTs.
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