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Modular Robot Connector Area of Acceptance from Configuration
Space Obstacles

Nick Eckenstein, Mark Yim

Abstract— Physical connectors which have geometry to pas-
sively guide mating increases robustness in attachments. This is
a key design area for self-reconfigurable modular robots, which
frequently make and break connections. By repurposing the
interpretation of a well-known motion planning tool in config-
uration space obstacles for its encoding of contact geometry, we
present a method for determining a metric of error tolerance
(area of acceptance) in multiple dimensions by construction.
Watershed analysis is run on this configuration-space model to
determine the full shape and area of the capture region for the
connector pair. We show the results of this process for several
connector types.

I. INTRODUCTION

Docking of two rigid objects occurs in many situations
from the assembly of a peg in a hole to the docking of two
satellites in orbit. In mid-air refueling, a jet receives fuel from
a tanker plane via a probe on the front of the jet mating with
a trailing drogue from the tanker [1]. In self-reconfigurable
modular robots, the (dis)connecting capability differentiates
the robot system [2].

Criteria for a good connector design depends on the
application but can include: strength, information/power
transfer capabilities, and alignment error tolerance. For self-
reconfigurable modular robots, errors in joint positioning
can cause the docking faces to be positioned unpredictably.
Alignment errors are often corrected using active systems
such as actuated latches [3].However, this actuation increases
system complexity. To counteract this, the sloped geometry
of mating faces such as chamfers can be designed to help
passively guide the docking process. For example, in mid-
air docking/refueling applications turbulence can make the
docking positioning difficult. Larger mating features can
accommodate larger errors and allow for lower precision
control often leading to lower cost and more robust systems.
Error tolerance must then be weighed against factors such as
size and shape.

In previous work we introduced the concept of area of
acceptance. Area of acceptance (AA) is defined as ’the
range of possible starting conditions for which mating will
be successful’ [4]. In other words, AA is the full set of
possible errors (for translation, rotation, and the two in
combination) that the connector can accommodate and still
mate successfully.

A. Related Work

Our previous work on maximizing area of acceptance
focused on planar connectors [4]. Two geometries called V-
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Fig. 1: Two-dimensional connector geometries.

Face and X-Face respectively and their maximum offsets are
shown in Fig. 1. The V-face is a simple example of large
chamfered mating surface. Note the X-Face is actually a
’2.5D’ connector with two layers, giving it a wider allowable
offset.

In this work we propose a configuration-space approach
applied to contact analysis. Configuration-space methods are
common in robotics applications, often used to simplify colli-
sion checking in path planning or inform kinematic reasoning
for a system. Accurate computation of this configuration
space in these cases is important, but potentially computa-
tionally intensive. Techniques to quickly compute the bitmap
representation of the configuration space have been devel-
oped using the FFT [5].Polygonal boundary representation
is somewhat more common - it is more accurate at the small
scale, and allows for analysis of contacts based on the shapes
of the space formed. It is useful in situations where the space
and robot do not lend themselves to discretization. An early
but detailed survey of configuration space methods can be
found in [6]. Of note from this survey is that out of the 27
papers surveyed, only one [7] successfully represented the
full six dimensional C-space for a 3D polygonal robot.

In the contact space analysis arena Rimon et al. [8]use
configuration space representations to form a first and second
order mobility theory suited for robotic grasps. In a separate
work from the same authors [9], planar objects are examined
under a potential field for stability. However, these tests
determine the stability rather than the capture region of the
stable configurations. Capture regions in this context are the
regions in configuration space in which a 3D object will
fall to the same stable pose on a horizontal surface. This is
similar to AA, but applied to one object on a plane rather
than two docking objects. Kriegman [10] examines maximal
capture regions with an assumption of dissipative dynamics.

In our analysis of 3D shapes, watershed algorithms can be
used to identify maximal AA. Watershed algorithms are used
in computer vision and image processing applications, in
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particular morphological segmentation. Often these methods
are applied to pixel grids for edge detection in images or
3D meshes for contour/feature recognition [11]. A common
strategy is to work from the minima up, ’flooding’ the cap-
ture regions until the two sources meet, and then constructing
a barrier or dam there. Other methods follow individual
points along a path of steepest descent to determine which
minimum they reach [12].

II. BACKGROUND

The docking problem is the process of creating a phys-
ically rigid connection between two objects (e.g. robot
modules). The problem can be broken into three parts: 1)
approach from an arbitrary distance, 2) contact, sliding
alignment and mating and 3) atfachment. Without loss of
generality we can consider one of the objects to be fixed and
the other docking object moving relative to it. In the first two
phases, the moving object moves in a constrained fashion
where one degree of freedom (DOF) (e.g. the approach
direction) has fixed velocity with the other DOFs compliant.
For example, if we consider the six DOF of a robot module
docking with a space station, one translational dimension is
constrained to move such that the robot gets closer while
the other translation and orientation DOF are free to move.
Here, we will focus on the contact phase only.

In addition to this motion constraint we make further
simplifying assumptions to aid analysis. We assume the
directions which are free to move have motion that is
quasi-static, fully damped, with no friction, no restitution,
nor dynamic/inertial effects. This allows us to focus on
the geometric features and just the initial offset conditions
under which docking will succeed. These initial conditions
are defined as an offset in the relevant DOF (rotation and
translation) from the perfectly aligned state.

A. Configuration Space Representation
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Fig. 2: C-obstacle construction by Minkowski difference,

represented as A+(-B), for two different slices. The middle
image shows a partial step. Top: =0, bottom: 6=75
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In motion planning, the configuration space is the
collision-free space of all possible states of a robot’s DOF
relative to obstacles in the environment. For a mobile robot
moving on a plane amongst obstacles, the robot can be
shrunk to a point and the obstacles concomitantly grown so
that collision-free motion can be examined as a point moving
through the space [13].

The configuration space representation is generated from
the geometry of the robot and obstacle. For the docking case
we will treat the two mating connectors as robot and obstacle.

For example in the V-face connector the lower object (call it
A) in Fig. 1 can be the robot and its mating connector (call
it object B) can be the obstacle, resulting in Fig. 2.

A configuration space obstacle (C-obstacle) for a robot
in the plane capable of only translation is generated by the
Minkowski difference of the robot and obstacle. However,
we wish to analyze the configurations including rotations. To
do this, we can rotate our robot A successively through the
range of possible rotations to generate ’slices’ at each discrete
rotation. In this case, we must rotate the objects about a
particular point. The center of rotation is often unimportant
in many analysis. As will be seen, the choice of rotation
point cannot be ignored for our case.

The slices are then placed in a 3D space with the
z-axis corresponding to the rotation angle theta. Finally,
neighboring slices are joined into 3D layers to create an
approximation of the C-obstacle. For efficiency we consider

rotations bounded to regions where mating might be possible,
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Fig. 3: Configuration space representation. Mating configu-
ration indicated by a white circle.

III. METHOD DESCRIPTION

x4

Fig. 4: Robot arm and connector setup

For our analysis, we will assume a planar connector
attached to a robot arm and the mating connector on a
movable base below it as in Fig. 4. The arm moves down in
Y and the base is free to move in X. The arm is considered
out of plane. Collisions are possible only between the two



connectors. We will define the approach direction to be in
the negative Y direction, with translations in X and rotations
in 6 being unconstrained.

Fig. 5 shows an overview of the four steps to finding the
area of acceptance. The first step examines the connector
geometry. The second step finds the C-obstacle using the
method described above. In the contact phase of the docking
process, the alignment motion can be interpreted as motions
of a point on the C-obstacle surface corresponding to the
relative positions of the two objects in contact. Since the
motions are constrained to have a negative Y component with
no inertial effects, the direction of motions on any surface
of the C-obstacle will be the projection of a line parallel to
the Y axis going through the point of interest on the surface.
In other words, if the negative Y direction was downward
gravity, and the C-obstacle surface was a physically rendered
surface, the path of a water droplet on the surface would be
the path of the two objects in contact.

We seek to find the set of all points whose path ends at
the target docked configuration. If the system has a non-
trivial AA, the target docked configuration will be at a local
minimum and there will be a neighborhood of connected
areas that flow to this minimum. For example, in Fig. 3 a
C-obstacle is shown for the V-Face connector. The target
docked configuration indicated with a white circle is at a
minimum in Y. The set of points to which water droplets
would flow is termed a watershed [14].

In the final step, the area of acceptance is the projec-
tion of this watershed onto a plane perpendicular to Y.
Computational geometric toolboxes aid our analysis. The
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Fig. 5: Four of the steps to finding the Area of Acceptance

Multi-Parametric Toolbox contains functionality for repre-
sentation, intersection, and Minkowski sum operations [15].

A. Design Parameterization

The area of acceptance domains we seek are offsets from
the single straight-line direction of approach for mating. In
the 2D connector case, the approach direction is y with off-
sets in the x and 6 directions. The centers of rotation advance
directly towards one another in the approach direction with
offset values x and 6 held constant until contact is made.

Eventually the two connectors reach a stable configuration or
fall away from each other completely. Stable configurations
in the C-space are local minima, and we call the desired
stable configuration the ’target docking configuration’.

In standard motion planning, 6 axis geometry of the C-
obstacles is made by rotating the robot and taking Minkowsi
difference with the obstacle X, Y position fixed. In our case,
the only reference that does not have a DOF arbitrarily free
to move is the arm attached to the top mating connector
(fixed in X and controlled in Y'), thus it makes sense to use
the center of rotation as the fixed reference frame and not a
point on the obstacle. Unlike in motion planning, the center
of rotation is now important to the C-obstacle shape and does
impact watershed.

On the other hand, changes to reference in the X direction
does not impact the watershed. There are two relative frames
of reference for displaying the area of acceptance - the
‘rotation frame’ and the ’face frame’. Depictions of the two
frames are shown in Fig. 6. Changing from ’rotation’ to
’face’ frame only shifts the X direction of each slice for
better visualization of the AA. It does not change the Y
values. Likewise it does not effect the total area of the AA.

Center of face frame

Center of rotation frame

Fig. 6: "Rotation frame’ vs. *Face frame’.

Two critical design parameters for planar faces are:

o Aspect ratio of features (AR), defined as %, where H
is vertical difference between maximum and minimum
points on the face, and D is width of the connector

o Center of rotation distance (COR), with magnitude of
the distance from the center of the connector to center
of rotation, normalized by the H: COR = djq#.

COR can be positive or negative. Center of rotation points
’behind’ the face of the connector are given negative values,
whereas points ’in front’ of the connector are given positive
values. Changing the COR has a strong effect on the AA -
more of the slices are uphill of the target for positive COR,
which can create a larger watershed. In terms of contact, this
means the robots with these COR far in front of the connector
are more prone to rotate towards the target configuration. The
opposite is true for COR far behind the connector.

IV. WATERSHED ALGORITHM

Once we have generated the C-obstacle as described in
Section II-A, we reduce the C-obstacle to its outer boundary,
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Fig. 7: Two configuration space obstacles for the V-Face
connectors generated with same AR and different COR (+2/-
2). AA is shown in red.

found by intersection of the obstacle and the closure of its
complement. Since we know our target docking configura-
tion, we can remove all parts below it, which cannot be in
the watershed.

A. Pre-partitioning

One way to compute watersheds on grid data sets is by
using flooding algorithms. Our representation is different
from typical sets of vertices analyzed for watersheds in two
ways: vertices are set in arbitrary convex polyhedra rather
than on a grid, and the representation is likely to be sparse.
This can lead to some incorrect watershed assignment with
traditional flooding algorithms without the appropriate rules
for construction of dams (Fig. 8).
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(a) Naive assignment of ver- (b) Assignment using pre-
tices to watersheds by flooding partitioning

Fig. 8: Watershed assignment for a simple ’ridge’ shape
using flooding and pre-partition methods. The central green
polyhedron in the first figure is indeterminate, as the vertices
are assigned to multiple watersheds.

We present a new method for finding the watershed on
convex polyhedra. First we pre-partition the set of polyhedra
on the boundary such that each polyhedron has no more
than one *downhill” polyhedron. Each polyhedron is bounded
and has a direction of steepest descent, and thus a (possibly
empty) set of neighboring polyhedra to which points strictly
descending along the polyhedra in this direction will go. To
partition, we split polyhedra until each polyhedron has no
more than one downhill polyhedron for all points inside it.
Once partitioned, we can analyze each polyhedron as a whole
rather than having to look at points independently.

To perform the splits, we find a polyhedron’s shared edges
with neighbors by intersection, and compare these to the
set of ’downhill’ edges. The downhill edges can be found
by shifting any point on the edge some small € along the
direction of steepest descent. If this point is outside the
polyhedron, the corresponding edge is a downhill edge.

Downhill edges are divided according to which neighbor they
intersect. The original polyhedron is then split into multiple
polyhedra upwards along the direction of steepest ascent.
Since this procedure can generate more polyhedra downhill
of a previously split one, we repeat until no polyhedra remain
which need be split. This method converges provided the
polyhedra are a function on the downhill direction (each (x,y)
corresponds to no more than one z).

B. Graph Traversal Algorithm for Watersheds

As each polyhedron leads to no more than one other, the
set now resembles a graph structure known as a directed
pseudoforest. Directed pseudoforests are defined as graphs
in which each vertex has no more than one outgoing edge.
For each polyhedron, we can follow the paths on this graph
structure to find a watershed, with a few extra rules specific
to the geometric conditions.

1) Ravine Condition: When two polyhedra point to one
another, they have some line connecting them that must be
’downhill” of both. The points on these polyhedra then would
normally flow down along this ’ravine’ line until they reach
another polyhedron. In the case where two polyhedra point to
one another, we must go back to the geometry and find the
new polyhedron they then point to. We call this a ravine
condition. In order to determine the result of the ravine
condition, we use the lowest point on the ’ravine’ line r_.
If this point is contained in one other polyhedron, the two
polyhedra then have their corresponding outward graph edges
reassigned to this new polyhedron.

It is possible that this point will be contained in more
than one polyhedron and one must be chosen to proceed.
We choose the polyhedron with the steepest downhill slope,
as it represents the most likely direction for the motion to
proceed in should some instability be introduced (as it often
is in real cases).

2) Base Watersheds: After applying ravine conditions,
certain geometric cases present base watersheds by having
no further polyhedra to which they will flow. There are two
cases in which we can declare a base watershed reached. The
first case is one in which the polyhedron points to nothing,
or equivalently the vertex on the graph has no outgoing
edge. Polyhedra which satisfy this condition are assigned
to a single ’outside’ watershed. The second occurs when
polyhedra point to each other in a loop containing more than
two polyhedra. In this case we have reached a set around a
single watershed point, and in this case these polyhedra are
sides of a single minima.

Once the base watersheds and ravine conditions have been
integrated into the graph, each polyhedron is assigned to a
watershed as follows.

For each polyhedron, we traverse down the graph along
corresponding nodes until we reach a base watershed, or
a polyhedron (node) that is already assigned. We assign
this polyhedron and each polyhedron along its path to the
corresponding watershed.

Once all polyhedra have been assigned, we can determine
which polyhedra make up the watershed corresponding to our
target docking configuration. The set of polyhedra represents
the 3D surface corresponding to the area of acceptance. To



find the final AA in the correct dimensions, we project this
down into the free DOF - in the 2D case, x and 6.

V. TESTING AND RESULTS

Two connectors - the V-Face and X-Face (Fig. 1) are used
as examples. As a tool to evaluate connector shapes, the
method is broadly applicable to any connector shape. We
examine the two parameters mentioned earlier - (AR) and
(COR).

These results are quantified as an area value in Tables I
and II, with the plots showing the final shapes in Figures
9. Comparing to the results from the dynamic simulations
performed in [4], we can see that most of the areas of
acceptance are larger by a factor of up to two, as expected.
Contrary to expectations, four values in the upper right
section of the table are larger for V-Face than X-Face.

This may be due to the change from dynamic to quasi-
static analysis. Several large patches reach critical points
which in the dynamic case would pass into the area of
acceptance, but in the quasi-static case do not. The results
show that this method is capable of determining the area of
acceptance within a certain level of accuracy.

Several trends are observable in terms of the design
parameters. More remote (positive) COR tends to correspond
to larger AA, as does smaller aspect ratio. We desire lower
aspect ratio in order to keep connector size small for a given
module width, so we find this result encouraging.

Some limitations to the method exist. Complexity scales
up approximately with the number of slices we take in the
rotational DOF (), and the number of connector edges.
Geometrically complex connectors with lots of edges will
take longer to analyze. The lower the number of slices taken,
the less accurate the final representation of the configuration
space and therefore the area of acceptance. The watershed
algorithm however has the advantage of being complete
on the polyhedral representation and preserves watershed
regions that might be missed by flooding algorithms for lack
of a vertex.

TABLE I: AA computed for V-Face

COR:-1 | COR:-1/2 | COR:0 | COR:1/2 COR:1
AR:1/4 | 0.38279 0.36586 0.85202 | 3.01069 3.14159
AR:1/2 | 0.40842 0.41129 0.86089 1.70012 2.77135
AR:1 0.43884 0.41643 0.87031 1.84022 3.14159
AR:2 | 045084 | 0.88724 | 0.84957 | 1.34941 | 3.14159
AR:4 | 046520 | 0.93465 | 0.88223 | 1.24182 | 3.14159
TABLE II: AA computed for X-Face
COR:-1 | COR:-1/2 COR:0 COR:1/2 COR:1
AR:1/4 | 1.09399 1.13635 1.28541 1.48352 1.84839
AR:1/2 | 0.97134 1.71965 1.99431 2.09141 227377
AR:1 0.92277 0.92203 1.79100 | 2.90494 | 3.13473
AR:2 0.88932 1.74696 1.66098 2.79853 | 4.09213
AR:4 0.89578 1.76955 1.65310 | 2.29481 4.65092

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a new method of analysis for the area
of acceptance of mechanical connectors under alignment.
The method makes use of the C-obstacle representation of the
connector pair and a new watershed determination method

to find the region of attraction also known as the area of
acceptance. From the C-obstacle representation we present
a pre-partitioning method that divides the polyhedra making
up the boundary such that each one has one ’downhill’
polyhedra. We can then represent the set of polyhedra as
a traversable graph.Following the graph path leads each
polyhedra to its watershed assignment. We performed this
method on two different connectors with a variety of design
parameters. The result is a metric we can use to compare
the connectors. This information allows us to make informed
decisions about connector design.

We have already used this method to generate multiple
C-obstacles for pairs of 3D connectors. In future, we seek to
expand the method to 3D connectors, and find the AA metric
from the corresponding 6D C-space obstacles. We may also
seek to extend this work to generating geometries with
maximized areas of acceptance for use as across platforms.
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