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Abstract— Physical connectors which are robust to errors in
position have the potential to contribute to the capabilities of
many robot designs. This is especially true for modular robots,
which frequently make and break connections. Determining
the precise robustness of these connectors to errors has been
a challenging topic for researchers, with many limited to
categorizing the error tolerance in terms of single dimensions.
We show a method for determining very closely the region
of error tolerance (area of acceptance) in multiple dimensions
by construction of a configuration-space model for a connector
pair. Watershed analysis is then run on this configuration-space
model to determine the full shape and area of the region of
capture for the connector pair. We show the results of this
process for several connector types.

I. INTRODUCTION
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Fig. 1: Four of the steps to finding the Area of Acceptance

II. RELATED WORK

The particular approach and application presented in this
paper are unique, but there exists a significant history of work
for both configuration-space representations and watershed
algorithms in robotics literature.

Configuration-space methods are common in robotics
applications, often used to simplify collision checking in
path planning or inform kinematic reasoning for a system.
Accurate computation of this configuration space in these
cases is important, but potentially computationally intensive.
Techniques to quickly compute the bitmap representation
of the configuration space have been developed using the
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FFT [1] and polynomial transforms [2]. Polygonal boundary
representation is somewhat more common - it is more
accurate at the small scale, and allows for analysis of contact
mechanics based on the shapes of the space formed. In
particular, each surface represents a specific contact condi-
tion. It is also more useful in situations where the space
and robot do not lend themselves to discretization. An early
but detailed survey of configuration space methods can be
found in [3]. Of note from this survey is that out of the
27 papers surveyed, only 1 [4] successfully represented the
fully-dimensioned(that is, 6D) C-space for a 3D polygonal
robot.

Watershed algorithms are used in computer vision and
image processing applications, in particular morphological
segmentation.

Similar techniques based on stability of objects in contact
have been performed in other contexts. Kreigman [5] uses
a capture region approach with an assumption of dissipative
dynamics to calculate the stable positions of shapes against a
plane along with their capture regions; however his approach
is difficult to adapt to two arbitrary shapes. Stability tests
based on the configuration space are well known. Mason,
Rimon, and Burdick [6] [7] use configuration space represen-
tations to form a first and second order mobility theory suited
for robotic grasps. In a separate work from the same authors
[8], planar objects are examined under a potential field for
stability. Unfortunately, these tests determine the stability
rather than the capture region of the stable configurations.

Computational geometric toolboxes were necessary in
order to complete our analysis. In particular we made use of
the Multi-Parametric Toolbox for our computations, which
contains functionality for representation, intersection, and
Minkowski sum operations on these sets of polyhedra [9].
The robust and optimized implementation of these operations
proved essential to the timely completion of the analysis.

III. BACKGROUND

The docking problem is the process of creating the in-
tended physical connection between two modules or robots.
The problem can be broken down into two separate parts:
alignment (or mating) and attachment. The first part means
bringing the connectors into close enough proximity for the
second part, where the physical connection is made. Area of
Acceptance (AA) has been defined in previous work: *Given
some approach condition and pair of docking objects, the AA
is the set of initial poses (relative to each other) that result
in intimate alignment of the two parts.’ [10]. The approach



condition is the direction or path the two objects take towards
each other.

In this work, we examine 2-dimensional rigid connector
geometries. The connectors are controlled in the direction
of approach with the other translation and rotation DOF
free to move. These objects then come into contact and
contact forces cause some relative motion until a stable
state is reached, possibly the alignment state. We make
some assumptions; namely that the motion is quasi-static
and fully damped with no friction, coefficient of restitution,
or dynamic/inertial effects. Since the geometric features of
the connector effect the contact forces, we want to know if
these features will cause the two objects to mate under given
initial conditions. Initial conditions are defined as an offset in
the relevant DOF (rotation and translation) from the perfect
alignment state.

The configuration space is the state of all possible
combinations of translation and rotation of a robot. For an
obstacle in the workspace, we would like to determine to
determine the states where the robot would be in contact
with that obstacle. Therefore we form a configuration space
obstacle by growing it according to the shape of the robot;
the new shape is formed from the space taken up by the robot
when it is overlaid on top of each point of the obstacle.

IV. METHOD DESCRIPTION

Analyzing the area of acceptance involves the two con-
necting objects in contact. The configuration space methods
develop a model of two objects in contact. Contact analysis
can then be done on this one surface of the c-obstacle
which has all poses and surface interactions between the two
objects encoded. This is particularly useful when considering
combined rotations and translations of the objects in which
docking behavior is unintuitive.

When two objects are in contact, docking along the
controlled direction can be interpreted as motions along the
C-obstacle surface in which the dot product of the surface
normals with the docking direction vector is negative. If the
target docked configuration is at a local minima (which is
the desired design criteria) then all connected areas that have
the negative dot product condition will lead to that docked
configuration. In a height field this would be termed a water-
shed. Once this watershed is found on the surface, we define
the area of acceptance as the projection of this watershed
onto a plane perpendicular to the docking direction.

A. Key Concepts

Our method utilizes the idea of configuration space to
analyze a pair of connectors. One connector is considered to
be non-moving or the ’obstacle’, and the other is considered
to be moving, or the 'robot’. We can apply this to situations in
which both connectors can move without loss of generality,
by choosing the appropriate frame of reference.

We make additional assumptions about our connectors in
the 2D case order to facilitate our analysis:

o The center of rotation of the connector moves strictly
downward (in y) during the alignment phase. Note that
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Fig. 2: Contact state visualization of a connector pair and
offset coordinate system. Bottom connector shown here
split into the union of two convex pieces for use within
computational toolboxes.

this is not necessarily the center of the connector, which
may in fact go up as the center of rotation is forced
down.

o The center of rotation of the connector moves downward
in a straight line until contact between the connectors
occurs, at which point interaction forces allow it to
move in X. In other words; there is a single straight-
line direction of approach in the negative y direction.

The domains we seek to determine area of acceptance for are
offsets from the single straight-line direction of approach for
mating in the relevant domains. In the 2D connector case
considered in this paper, the approach direction is y, with
offsets possible in the x and 6 directions. The centers of
rotation advance directly towards one another in the approach
direction with offset values x and 6 held constant until
contact is made. Motion continues monotonically along the
direction of approach, free to move in the error domains.
Eventually the two connectors reach a stable configuration or
fall away from each other completely. Stable configurations
are represented in the configuration space by local minima,
and we call the desired stable configuration the ’mating
configuration’.

There are two relative frames of reference for discussing
the area of acceptance - the ’center of rotation frame’ and
the ’center of face frame’ Depictions of the two frames are
shown in Figures 3 and 4. You can see how the different
frames affect the configuration space representation in ??.
Arms are considered ’out of plane’ and do not interact -
collisions are only possible between connector surfaces.

Each pair of connectors has two design parameters. Aspect
ratio of features is defined as %, where H is vertical differ-
ence between maximum and minimum points on the face,
and D is width of the connector. Center of rotation distance
is defined as distance from the center of the connector to
center of rotation, normalized by the height of the connector.
Center of rotation points ’behind’ the face of the connector
are given negative values, where as center of rotation points
’in front’ of the connector are given positive values.



Fig. 3: Example of the ’center of rotation frame’. Note that x
is measured between center of rotation of the moving piece
and the center of the fixed piece.
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Fig. 4: Example of the ’center of face frame’. Note that x is
measured between center of the moving piece face and the
center of the fixed piece face.

B. Method Steps
This method has six steps:

- Description of parts and center of rotation

- Generation of C-Space representation

- Conversion to boundary

- Reduction to area of interest

- Prepartitioning of polyhedra

- Watershed determination by Two-Rule Algorithm
- Projection of watershed to error domain

The first step is purely definitional: here we define the
geometry of the connectors in a concrete way along with
their center of rotation.

V. GENERATION OF CONFIGURATION SPACE
REPRESENTATION

The configuration space representation is generated from
the description of the connectors. First we generate a fully
rotated representation of the moving’ connector. The fully
rotated representation is the geometry of the connector

extended in extra dimensions according to the directions in

which rotation is possible ( Fig. 5). The rotation is bounded
to regions where mating might be possible, i.e. %ﬂ to =

Since continuous representation of the rotation is impossiblze,
we must carefully choose a resolution to approximate the
rotation.

Fully Rotated

- VFace convex side
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Fig. 5: Example of a rotated representation

Now that we have a fully-dimensional representation of
one connector, we perform a Minkowski sum of the fully ro-
tated representation and the lower-dimensional representation
of the non-moving connector. If multiple convex polyhedra
make up one or both of the connectors, a union operation is
also performed involving these polyhedra.

Now we have a fully-dimensional configuration space
representation of the connectors. Looking at the example in
Figure 6, we can see there is a concavity surrounding the
mating configuration. This concavity represents part of the
watershed for the mating configuration - the set of points
which will *flow’ down to it.

We have used this method to generate multiple configu-
ration space obstacles for pairs of 2D connectors as well as
3D connectors. To the authors’ knowledge, the full (6dof)
configuration space obstacle for 3d shapes has not been
generated since 1985 [4].

We now can reduce the C-space obstacle to its outer
boundary. The boundary is found by intersection of the
obstacle and the closure of it’s complement. If we know
our mating configuration in advance (which we often do),
we can remove all parts of the boundary below that, which
by definition cannot be in the watershed.

VI. WATERSHED ALGORITHM
A. Pre-partitioning

Now that we have the configuration space representation in
a manageable form, we want to determine the watershed for
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Fig. 6: Configuration space representation. Mating configu-
ration indicated by a white circle.

our mating configuration. Historically, watersheds on data
sets are found by use of the existing points with flooding
algorithms. Our representation is different from typical sets
of vertices analyzed for watersheds in two ways. Our vertices
are set in arbitrary convex polyhedra rather than on a grid,
and there exists a likelihood the representation is relatively
sparse. This can lead to some incorrect watershed assignment
if traditional flooding algorithms are applied without the
appropriate rules for construction of dams. See Figure ??
for an example.

We have created and implemented here a new method
for determination of the watershed on a set of convex
polyhedra. The first part of this determination consists of
pre-partitioning the set of polyhedra on the boundary such
that each polyhedron has no more than one ’downhill’
polyhedron. Each polyhedron by definition has a direction of
steepest descent, and thus a (possibly empty) set of neigh-
boring polyhedra to which points strictly descending along
the polyhedra in this direction will go. The prepartitioning
step consists of splitting polyhedra until each polyhedron
has no more than one downhill polyhedron for all points
inside it. Any point in this polyhedron then would travel
to the same resultant polyhedron along its path of motion.
Once partitioned, we can analyze each polyhedron as a whole
rather than having to look at points independently

The prepartitioning allows us to say that each polyhedron
has one and only one ’next’ polyhedron on its path.

B. Graph Traversal Algorithm for Watersheds

With each polyhedron leading to no more than one other,
the set now resembles a directed pseudoforest graph struc-
ture. Directed pseudoforests are defined as graphs in which
each vertex has no more than one outgoing edge. We can
perform a search on this graph structure to find a watershed,

with a few extra rules specific to the geometric conditions.

In particular, these rules are based on a geometric condi-
tion which requires us to alter the graph structure slightly
before assigning watersheds:

1) Ravine Condition: When two polyhedra point to one
another in this set, they have some line connecting them that
must be ’"downstream’ of both. The points on these polyhedra
then would normally flow down along this ‘ravine’ line until
they reach another polyhedron. So in the case where two
polyhedra point to one another, we must go back to the
geometry and find the new polyhedron they then point to.
We call this a ravine condition. In order to determine the
result of the ravine condition, we simply find the lowest point
on the ‘ravine’ line r_. If this point is contained in one other
polyhedron, the two polyhedra then have their corresponding
outward edges reassigned to this new polyhedron.

It is however possible, even likely, that this point will be
contained in more than one polyhedron. If this is the case, we
must choose some polyhedron to proceed. So we choose the
polyhedron with the steepest downhill slope, as it represents
the most likely direction for the motion to proceed in should
some instability be introduced (as it often is in real cases).

2) Base Watersheds: After applying the ravine conditions,
certain geometric cases present base watersheds by having
no further polyhedra to which they will flow. There are two
cases in which we can declare a base watershed reached. The
first case is one in which the polyhedron points to nothing,
or equivalently the vertex on the graph has no outgoing edge.
This case most often occurs on the outside of the geometry,
which is equivalent to the motion of the two connectors
falling away from each other. Polyhedra which satisfy this
condition are assigned to a single ’outside’ watershed. The
second occurs when polyhedra point to each other in a loop
containing more than two polyhedra. In this case we have
reached a set around a single watershed point, and it is simply
the case that these polyhedra are sides of a single minima.

VII. TESTING AND RESULTS
A. Relevant Geometry

In the interest of examining simple and representative ex-
amples of connector geometry, we selected for analysis two
connector shapes - the V-Face and X-Face. These connectors
were analyzed using a more dynamic method in a previous
paper [11]. They are chosen for having simple geometry and
a proven maximum possible lateral offset allowing successful
self-alignment. Representations of the geometries and their
lateral offsets are shown in Figure 7. Note that the X-Face
is actually a 2D connector with two layers, giving it a wider
allowable lateral offset. In practice, this means the X-Face
requires some special handling - we generate the contact
space for each layer separately and then take the union. The
intended use of this method is to compare different connector
shapes (ie. X-Face, V-Face) as well as compare the same
shapes across two important design parameters - aspect ratio
of features and center of rotation distance. These parameters
are defined below.
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Fig. 7: Two-dimensional connector geometries that were
tested.

B. Results

Results of the procedure were found for the V-Face and X-
Face. These results are quantified as an area value in Tables
I and II, with the plots showing the final shapes in Figures
8. Comparing to the results from the dynamic simulations
performed in [11], we can see that most of the areas of
acceptance are larger by a factor of up to two, as expected.
Counterintuitively, four of the values in the lower left section
of the table are larger for V-Face rather than X-Face.

After close examination of the C-space obstacle we con-
clude this is due to the change from dynamic to pseudostatic
analysis. Several large patches reach critical points which in
the dynamic case would pass into the area of acceptance,
but in the pseudostatic case do not. The results show that
this method is capable of determining the area of acceptance
of geometrically defined connectors within a certain level of
accuracy.

COR:-1 | COR:-1/2 | COR:0 | COR:1/2 COR:1

AR:1/4 | 0.38279 0.36586 0.85202 | 3.01069 3.14159
AR:1/2 | 0.40842 0.41129 0.86089 1.70012 2.77135
AR:1 0.43884 0.41643 0.87031 1.84022 3.14159
AR:2 0.45084 0.88724 0.84957 1.34941 3.14159
AR:4 0.46520 0.93465 0.88223 1.24182 3.14159

TABLE I: AA computed for V-Face

COR:-1 | COR:-1/2 | COR:0 | COR:1/2 COR:1
AR:1/4 | 1.09399 1.13635 1.28541 1.48352 | 1.84839
AR:1/2 | 097134 | 1.71965 | 1.99431 | 2.09141 | 2.27377
AR:T | 092277 | 0.92203 | 1.79100 | 2.90494 | 3.13473
AR:2 0.88932 1.74696 1.66098 2.79853 | 4.09213
AR:4 0.89578 1.76955 1.65310 | 2.29481 4.65092

TABLE II: AA computed for X-Face

VIII. CONCLUSIONS

We introduce a new method of analysis for the area
of acceptance of mechanical connectors under alignment.
The method makes use of the configuration space obstacle
representation of the connector pair and watershed determi-
nation methods to find the region of attraction also known
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as the area of acceptance. The analysis is valid given
several idealized assumptions and creates a representation
of the configuration space within some resolution. From the
configuration space obstacle representation we present a pre-
partitioning method that divides the polyhedra making up the
boundary such that each one has one ’downhill’ polyhedra.
We can then represent the set of polyhedra as a searchable
graph with some modifications based on geometry. Search
operations on the graph lead each polyhedra to its watershed
assignment. We performed this method on two different
connectors with a variety of design parameters. The result
is a metric we can use to compare the connectors and their
range of acceptance. This information allows us to make
informed decisions about connector design parameters in
robotic contexts.
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