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Abstract— Recent work in the field of bio-inspired robotic
systems has introduced designs for modular robots that are able
to assemble into structures (e.g., bridges, landing platforms,
fences) using their bodies as the building components. Yet,
it remains an open question as to how to program large
swarms of robotic modules so that the assembly task is
performed as efficiently as possible. Moreover, the problem
of designing assembly algorithms is compounded by the scale
of these systems, and by the lack of centralized guidance in
unstructured environments. The main contribution of this work
is a decentralized algorithm to assemble structures with modular
robots. Importantly, we coordinate the robots so that docking
actions can be parallelized. We show the correctness of our
algorithm, and we demonstrate its scalability and generality
through multiple scenarios in simulation. Experiments on
physical robots demonstrate the validity of our approach in
real-world settings.

I. INTRODUCTION

In nature, we see how a large number of ants are capable
of constructing structures using their bodies as the building
components. This capability allows them to rapidly build
temporary bridges to connect disjoint areas in order to
transport food and resources to their colonies. One of the
challenges in modular robotics is to develop mechanisms and
algorithms for autonomous robots that imitate these types of
behaviors found in nature. Specific formations and attaching
mechanisms allow multiple robots to build structures on
land or over water. Depending on the underlying real-
world problem, the utility of these structures will vary —
for example, bridges will connect disjoint lands, floating
surfaces at sea serve as landing platforms, and walls serve as
physical delimitations. Many modular systems, such as those
presented in [1], [2], [3], have developed modular robots that
are capable of moving in space and assembling. Docking all
robots at the same time is a difficult task, since undesired
attachments can be generated due to alignment problems and
inaccurate motion [4], [5]. For this reason, a conservative
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Fig. 1. A large team of modular robots that connects four different islands
by assembling a bridge.

approach, to avoid collisions and undesired attachments,
satisfies that (i) only pairs of attached groups are able to dock
at a time, and (ii) robots have to slow down in order to align
and orient themselves in the proper direction to guarantee
reliable docking. In order to satisfy these conditions, current
approaches [6] consider the addition of robots one-by-one
to form a modular robotic chain. However, this process is
inefficient in terms of construction speed due to the fact
that the structure’s formation time increases linearly with
the number of required robots.

Let us consider the modular bridge in Figure 1, where
a team of sixty modular floating boats creates a bridge to
connect three disjointed islands. In this environment, a single
robot is able to easily move around, but it is not capable of
connecting any pair of islands on its own. The collective
effort enables the swarm to assemble different structural
configurations in a fast manner. Both the maneuverability
of single agents and the method used for the assembly of
multi-robot structures greatly effects the assembly efficiency.
In this paper, we focus on the development of an algorithm
that can be deployed on a large number of modular robots,
with the goal of assembling structures using the robot bodies
as the building units.

Our approach can be applied to any aquatic or ground
modular robot while satisfying the conditions of being square
and holonomic. However, this holonomic condition can be
relaxed by allowing rotations of the modular structure, such
as the modular robot presented in [4].

A. Related work
In the robotics literature, multi-robot and swarm robotic

systems have been widely studied [7], [8], [9]. In these



works, distributed controllers are proposed to create forma-
tions based on the number of robots, but they do not consider
docking. The concept of attachment in swarm systems was
introduced in [10], where multiple robots join forces to
extend their capabilities. Some work focuses on building
structures based on modular robots; Cucu et al. [11] present
a bio-inspired ground robot design that builds pyramid or
chain structures. In this design, the robots can climb, move,
and attach among themselves in order to progressively build
stable structures. In [12] a cubic module is presented that
can form various arrangements, but it is difficult to move and
accurately localize. In [13], a flying array system is proposed
where the robot design is based on an omni-directional
ground platform with a propeller. The agents are manually
docked together on the ground in order to build a flying array
to increase the payload capabilities of the robot team, and
to reduce the number of failure points. However, this work
primarily focused on how to enable the modules to fly as a
cohesive unit, and not on how to efficiently join the modules.
In other work, multiple robots can build structures based on
attachable units, like bricks, that they stack together [14],
[15].

Our main contribution is a new decentralized algorithm to
assemble structures with multiple modular robots. In contrast
to prior work, our method is focused on guaranteeing that
the desired structure is assembled by parallelizing docking
actions while avoiding collisions and undesired attachments.

II. PROBLEM STATEMENT

We have a team of n modular robots in the Euclidean
space R2. The location of each robot i is denoted by xi ∈ R2,
and its orientation is denoted by θi ∈ [0, 2π], i = 1, ..., n.
The module has a square shape with a width equal to w. We
assume that the robots are holonomic and their control input
follows first order dynamics

ẋi = ui.

The attachment mechanism works as a passive actuator
that is triggered when two or more modular robots are in
contact (e.g. an attaching mechanism based on magnets).
Since the robots have a square shape, they have four edges on
which horizontal and vertical attachments can be made. Each
robot is equipped with localization and attaching sensors
to allow them to know their location in planar space and
to identify if it is attached to other robots. The attaching
sensor can be a physical contact sensor or the combination of
local communication and location information. For instance,
robot i knows if it is attached to another robot j when
‖xi − xj‖ = w, where ‖·‖ denotes the Euclidean norm.
Additionally, each robot is also equipped with a relative
location sensor that accurately identifies nearby robot loca-
tions. This sensor is mainly used during alignment for the
docking action. We refer to docking action as the motion
behavior that one or multiple joined robots perform to attach
to another non-empty set of joined robots. During this action,
motion and maneuverability are required to precisely align
the attachment mechanisms. For this reason, the docking
action is the most time-consuming task.

(a) (b) (c)

Fig. 2. Decomposing the bounding box of a feasible structure into sub-
rectangles. The disks represent the target points Z and their attachments are
represented by the continuous black lines. The bounding box surrounds the
structure and its sub-rectangles are highlighted by the background colors.
Panel (a) shows the decomposition of the bounding box into two sub-
rectangles. Panel (b) shows the decomposition of the initial sub-rectangles,
and Panel (c) shows the final decomposition, where each sub-structure only
contains a single module.

Assumption 1. Robots can move rapidly within their
workspace. In contrast, docking actions must be executed
with precision. As a consequence, we assume that the time
robots spend moving throughout space is negligible.

The desired structure is specified by a set of target points
Z = {z1, ..., zn}, zi ∈ R2. Since these target points define
the final locations of the modules, they should satisfy the
following assumption.

Assumption 2. The set of target points Z , |Z|> 0 satisfies:
• The distance between two adjacent points is w.
• The target points form a single connected structure.
• Let θ be the structure orientation, for any pair of points
zi, zj ∈ Z , s.t. ‖zi − zj‖ = w, there exists a straight
line with angle θ or θ + π/2 that crosses both points.
This means that the points are aligned in such a way
that only horizontal or vertical connections are allowed.

As it was aforementioned, we want to assemble structures
by only docking pairs of independent modules. The types
of structures that can be assembled is constrained because
we are only using horizontal or vertical docking actions. In
this paper, a feasible structure defines a compound structure
whose bounding box can be decomposed into a pair of sub-
rectangles, where each substructure is also a connected sub-
structure. Recursively, each sub-rectangle is also a compound
structure, meaning that its sub-rectangles are also connected
components. This property must be maintained until each
sub-structure is only composed by a single robot. Figure 2
exemplifies a compound structure and its sub-rectangles. In
Figure 2(a), we can see the bounding box and its two sub-
rectangles, where each sub-structure is also decomposed, as
illustrated in Figures 2(b) and 2(c).

The robots start at arbitrary locations as isolated units. We
assume that any pair of robot locations, (xi, xj), satisfies the
minimum separation distance ‖xi − xj‖> 2w. Using these
conditions, the problem addressed in this paper will now be
presented.



Problem 1. Given a desired feasible structure, specified
by a set of target points Z , find the collision free motions
and assembly sequence of |Z| modular robots in order to
assemble the given structure.

We present an efficient control algorithm to solve Prob-
lem 1 in the next section.

III. PARALLEL ASSEMBLY ALGORITHM

We propose a Parallel Assembly Algorithm (PAA) that con-
trols a team of isolated modular robots to construct a desired
structure while avoiding collisions and unexpected attach-
ments. Since the docking actions are the time-consuming part
of the assembly process, our method focuses on parallelizing
these actions. In order to assemble a desired structure, the
robots move from their initial arbitrary locations to specific
locations in a formation. Following this, the robots then
apply a sequence of docking actions to finally create a single
connected component.

For convenience and without loss of generality, we state
all our following algorithms assuming that each robot’s
orientation is zero, θi = 0. There is no loss of generality
in this assumption because any desired structure angle θ can
be oriented to zero by a simple axial rotation. Suppose θ 6= 0,
and consider the change of variables x′(t) = Rθx(t), θi = 0,
where Rθ is a rotation matrix. Therefore, generality is not
lost and we can assume that θ = 0 and θi = 0.

In the beginning, the robots start in arbitrary locations and
all of them receive the desired structure as a set of target
points Z (they do not know where they are allocated yet).
Then, they follow our decentralized method which is based
on the following three stages.

A. Stage 1: Navigating to an Expanded Configuration

Attaching all robots at the same time is a difficult task due
to alignment problems and inaccurate movements. For this
reason, we first move the robots from their initial locations
to an expanded configuration of the desired target locations.

Let G = (V, E) be a graph that represents the structure,
where the vertices V = {1, ..., n} are associated to the target
points of the robots, and the edges symbolize the desired
physical connections between each pair of robots and are
represented as E = {(i, j)|‖zi − zj‖ = w,∀i, j ∈ V}.
The geodesic distance between a pair of nodes refers to the
number of edges in the shortest path. Let c ∈ V be a vertex
with minimum eccentricity, i.e., a vertex in the center of the
graph which has the minimum geodesic distance to reach
any other vertex in V [16]. The associated reference point
to the node c is denoted by zc. Therefore, we compute the
expanded set of target points as

ZE = {2(z − zc) + zc,∀z ∈ Z}. (1)

In this new set of target points, each pair of neighboring
points increases their distance from w to 2w.

The robots are then moved from their arbitrary locations to
the expanded target locations ZE . We use the Decentralized
Concurrent Assignment and Planning of Trajectories (D-
CAPT) algorithm [17] as a decentralized method to allocate

and move robots from their initial locations to the expanded
target points ZE by minimizing the maximum traveling
distance and avoiding collisions. By using D-CAPT, we
ensure that all the target points will be properly allocated and
the modules will not collide while navigating to the extended
target points ZE . This expanded configuration allows the
robots to identity the place where each of them belongs in
the final configuration.

B. Stage 2: Computing the Assembly Tree

Since the main bottleneck during the assembly process is
the docking actions, we want to compute an efficient and
feasible sequence of these actions. Our approach is focused
on parallelizing docking actions that can be performed in-
dependently. In other words, we want to start docking pairs
of single robots, and in the next step dock pairs of sets that
contain two already attached robots, then pairs of four, and
continuing in this way until the whole team is attached.

The assembly tree determines the sequence of docking
actions that each subset of robots must follow. It can be
computed in a decentralized manner such that each robot i
uses its current location in the expanded graph xi ∈ ZE to
compute its own branch in the assembly tree.

We call a component, denoted by C, a set of attached
robots that behave as a single rigid body. A partition traces
a vertical or a horizontal line which divides a component
into two disjoint sets C1 ∪ C2 = C. Since we want to
apply balanced partitions where the number of robots in
one component, |C1|, is close to the number of robots in
the other component, |C2|, we define a balance factor of a
partition (Ci, Cj) using the function

f(Ci, Cj) = |Ci| |Cj |.

This function f is maximized when the number of elements
in Ci is equal to the number of elements in Cj , since all
partitions satisfies the constraint |Ci|+|Cj |= |C|.

We define the assembly tree as a directed binary tree, T =
(VT , ET ), where the vertices VT are the components to be
assembled, and the set of relationships between components
and subcomponents is represented by the edges, ET . In this
hierarchy each component has two subcomponents, except
for the root nodes which are isolated robots. The binary tree
is initialized with the vertex of the complete structure VT =
{C}, C = {1, ..., n} and no edges, ET = ∅.

By definition of feasible structure, we know that the struc-
ture can be decomposed into a sequence of dockable parts.
However, we do not know the valid sequence of partitions. In
the worst case, where the n modules are in a line formation,
there are n − 1 ways to decompose the set of robots into
two subsets. Applying the same logic for the sub-partitions,
a structure with n modules can be subdivided into (n− 1)!
possible partitions. Therefore, an algorithm to check all these
possibilities would have time complexity O(n! ). Initially,
we will present a centralized version which reduces the time
complexity by using a dynamic programming approach.

Algorithm 1 describes a recursive method to compute
an assembly tree giving priority to balanced partitions. In



Algorithm 1: C-ComputeAssemblyTree(C,Z,M)

1 if M [C] 6= ∅ then
2 return M [C] . get stored tree for C
3 if |C|= 1 then
4 return (C, ∅) . Minimum assembly tree

5 P = AllPossiblePartitions(C,Z)
6 P ′ = SortByBalance(P, f)
7 foreach (C1, C2) ∈ P ′ do
8 T1 = C-ComputeAssemblyTree(C1,Z,M)
9 T2 = C-ComputeAssemblyTree(C2,Z,M)

10 if T1 6= ∅ and T2 6= ∅ then
11 VT = {C}∪,VT1 ∪ VT2
12 ET = {(C, C1), (C, C2)} ∪ ET1 ∪ ET2
13 M [C] = (VT , ET ) . Store computed tree
14 return (VT , ET )

15 return ∅

order to avoid recomputing the same substructures multiple
times, we store each computed assembly tree in a variable
M . Lines 1 and 2 check if the assembly tree of the input
component C was already computed, if so, it returns the
stored tree. The stop condition for the recursion is triggered
when the input component is a single module (Lines 3 and 4).
Line 5 computes all of the possible vertical and horizontal
partitions for the points in component C (the maximum
number of cuts is |C|−1, which is the case when all of the
robots are in a line formation). Since we want to give priority
to the balanced partitions, Line 6 sorts the partitions using the
balancing factor f . The for-each loop in Lines 7-14 checks
if there exists a valid partition. Lines 8 and 9 recursively
compute the assembly tree for each sub-component. We
check if the partition is valid in Line 10, meaning that there
are associated assembly trees for each partition. We store the
computed assembly tree for the component C in Line 13 and
return it in Line 14. The result of this centralized approach
is a full assembly tree T with prioritized balanced partitions.

We highlight that this dynamic programming based ap-
proach reduces the time complexity from O(n! ) to O(n2)
by saving the computed trees and avoiding recomputing. The
maximum number of subcomponents with one module in
a structure with n modules is n; the maximum number of
subcomponents with two modules is n − 1; and continuing
the same logic until having a single subcomponent with n
modules. Therefore, the total number of subcomponents is∑n
i i = n(n+1)/2, which demonstrates that the complexity

is reduced to O(n2). Taking into account the sorting method
for balanced partitions costs O(nlog(n)), and we are using
it for each recursion, the complexity of Algorithm 1, is
O(n3log(n)).

In the decentralized version of the algorithm, each robot
computes its own branch of the assembling tree Ti by only
expanding the branch of the component that it belongs to.
Instead of computing the other branches, the robot just ask if

Algorithm 2: D-ComputeAssemblyTree(i, C,Z,M)

1 if M [C] 6= ∅ then
2 return M [C] . get stored tree for C
3 if |C|= 1 then
4 return (C, ∅) . Minimum assembly tree

5 P = AllPossiblePartitions(C,Z)
6 P ′ = SortByBalance(P, f)
7 foreach (C1, C2) ∈ P ′ do
8 if i 6∈ C1 then
9 C1, C2 = C2, C1 . Robot i belongs to C1

10 T1 = D-ComputeAssemblyTree(i, C1,Z,M)
11 b = isValidPartition(C2) . Ask to any robot in C2
12 if T1 6= ∅ and b then
13 VT = {C, C2}∪,VT1
14 ET = {(C, C1), (C, C2)} ∪ ET1
15 M [C] = (VT , ET )
16 return (VT , ET )

17 return ∅

they are valid or not. After robot i executes Algorithm 2, it
get its own assembly tree Ti. Since all the robots follow the
same priority based function, the union of all assembly trees
will give the whole assembly tree T = ∪iTi. We can see that
Algorithm 2 is similar to Algorithm 1, the main differences
are the following. In Line 11, instead of computing the
assembly tree for partition C2, robot i asks any robot in C2 if
C2 is a valid partition or not. Line 13 and 14 only compute
the branch of interest for robot i. We illustrate the resultant
assembly tree for a desired structure in Figure 3.

Due to the nature of the binary tree, if all the partitions are
balanced, the robots will be able to assemble the structure
in time O(log(n)).

C. Stage 3: Performing Docking Actions

Once each robot i computes its own assembly tree Ti and
is located in its assigned point in ZE , it proceeds to follow
its sequence of docking actions, as described by Algorithm 3.
In the beginning, robot i initializes a component with a

(a) Desired structure (b) Assembly tree T

Fig. 3. A desired structure and its assembly tree. Panel (a) shows a
desired planar structure from a top view, where the square modules are
formed by the dashed lines and the allocated robot IDs are inside the
disks. The continuous straight lines represent the connections between the
robots. Panel (b) shows the total assembly tree T = ∪iTi, and the resultant
assembly tree T5 for robot 5 by using Algorithm 2.



single element (Line 1). In Line 3, the component C1 uses
the assembly tree to identify the next component that it is
going to dock to. The Sibling function returns the node in
the binary tree, Ti, that has the same parent as the node that
represents C1. Lines 4 and 5 compute the geodesic distance
of each component to the centroid in G. Since we want to
attach all of the robots surrounding the centroid, zc, we only
move the component that is farthest from zc. If the sibling
component C2 is ready (it is in the right location and all its
neighboring robots are properly attached) and is closer to
the centroid, then component C1 moves towards C2 to make
the attachment (Line 7). By the definition of a structured
graph G, we know that the graph G is connected. Therefore,
there exists an edge (p, q) ∈ E such that p ∈ C1 and q ∈ C2.
Then, the component C1 approaches C2 following the control
law

ui = K (x̂p − xp), ∀i ∈ C1, (2)

where x̂p = xq + zp − zq is the desired location for robot p
with respect to robot q. The matrix of gains

K =

[
k1 0
0 k2

]
,

prioritizes the movement in a desired axis based on the
parameters k1 and k2. We use these parameters to move
robots toward one particular axis of attachment faster than
the other axis. For example, if the attachment is vertical,
we use k1 = 3k with k2 = k, where k > 0 is a gain
constant. Similarly, we would use k1 = k with k2 = 3k
for the horizontal case.

In Line 9, C1 waits in its location while C2 gets ready,
or meanwhile C2 performs its docking action. If a new
attachment is created between two siblings, they consider
themselves a new single component in Line 11 and remove
the separated parts in the nodes of the assembly tree Ti. The
process from Lines 2-12 is repeated until a single component
is successfully assembled to complete the desired structure.

We can deal with delays during the parallelized docking
actions. These delays can be caused by errors in the motion
actuators or simply because some robots may move slightly

Algorithm 3: PerformDockingActions(i, Ti)
1 C1 = {i}
2 while |VTi |> 1 do
3 C2 = Sibling(C1, Ti)
4 d1 = dist(C1, zc) . Distance to the centroid
5 d2 = dist(C2, zc)
6 if ∃ C2 and d1 > d2 then
7 dockTo(C1, C2) . C1 docks to C2 with (2)

8 else
9 wait(C1) . Wait in place

10 if CheckAttachment(C1, C2) then
11 C1 = C1 ∪ C2
12 VTi = VTi \ {C1, C2}

faster than others. In this case, some components will not be
assembled on time, the robots that complete their docking
actions on time will wait for the delayed components to
be ready before executing the next motion (in Line 9). In
this way, our algorithm supports delays during the docking
actions.

When the robots are located in ZE , each robot is sur-
rounded by a larger square that we call a cell. Each cell
delimits independent area, and adjacent cells have a common
boundary. We illustrate the cells in Figure 4(a). During a
docking action, component C1 moves towards component C2.
We call safe region to the convex hull the cells that belongs
to the implicated components C1 ∪ C2. Within this safe re-
gion, robots can freely move and generate alignment actions
without risk of collision. We illustrate safe regions during
docking actions in Figures 4(b) and 4(c). We can see that the
colored background regions define a separation gap between
any pair of robot paths.

We use the concepts of cells and safe regions to show the
correctness of Algorithm 3 in the following proposition.

Proposition 1. If all the robots in locations ZE follow
Algorithm 3, the complete desired structure is achieved
without undesired collisions nor undesired attachments.

Proof. As a premise, the robots are located in ZE before
starting the algorithm. Then, each of them has an associated
independent cell. In the first iteration of the loop (Lines 2-
16), each pair of siblings in the assembly tree performs a
docking action at the same time. Lets say that a pair of robots
is C1 = {i} and C2 = {j}, then robot i moves towards
the cell of robot j (as described by Line 7). Equation (2)
drives robot i from its location, xi, to its desired docking
location x̂i. Then, robot i performs its docking action within
its safe region, meanwhile robot j just keeps its location
within its own cell. Since all robots perform docking actions
within their own safe regions, and the safe regions are
independent, all the docking actions performed in parallel are
collision free. After this iteration, all of the robots remove
the first level of the assembly tree (Line 12).

In the next iterations, we have a general component Ci that
docks to its sibling Cj by following its assembly tree Ti. A
safe docking action is then performed by moving the robots

(a) (b) (c)

Fig. 4. Three steps of the assembly algorithm for a structure with seven
robots. The robots are represented by the continuous-line-squares and their
cells are represented by the dashed squares. The background colored areas
represent the safe regions. Their trajectories at each time step are represented
by the dots. Panel (a) depicts the robots in ZE and their respective cells.
Panel (b) and Panel (c) illustrate the first and the second docking actions,
respectively.



within their own safe region (see Figure 4(c)). When all of
the robots complete this iteration, they remove another level
of the assembly tree.

Continuing the iterative loop, each robot will follow its
assembly tree Ci and remove one level at a time. Since all
the robots are following their own assembly tree, and we
know that T = ∪Ti, they follow the whole assembly tree T
and stop when they become a single component.

D. Summary

We summarize PAA in Algorithm 4. Given a set of n
modular robots in the Euclidean space R2 and a feasible
structure, specified by Z , and assuming the distance between
every pair of robots is greater than 2w and that Assumption 2
is satisfied, each robot i can follow Algorithm 4 to assemble
the structure.

The following proposition states the completeness of PAA.

Proposition 2. Given a feasible structure Z , if a team
of |Z| modular robots in arbitrary locations satisfy the
minimum separation distance 2w and follow PAA, then they
will assemble to the given structure while avoiding collisions
and unexpected attachments.

Proof. In Line 1, each robot can compute ZE based on
Equation 1, since they receive the structure Z .

By design, the robots satisfy the requirements to apply D-
CAPT; they are holonomic, the distances between robots and
destination points are greater than 2w. By Theorem 5.2 [17],
we can guarantee that the robots move from their arbitrary
locations to ZE (Line 2).

Based on their locations in ZE , the robots know their
location in the final structure, and thus each of them can
compute their own branch of the assembly tree Ti (Line 3).
Finally, in Line 4, by Proposition 1, the robots will follow
the assembly tree in order to build the given structure.

IV. EXPERIMENTS

In our experiments, we show that our method is scalable
and is able to assemble any connected structure. Initially we
present multiple simulations and then we validate that our
algorithm can be deployed on actual robots.

A. Simulations

We simulated different configurations in order to show
the generality of the algorithm. We present four different
configurations in Figures 5(a)-5(d). We present a single
rectangular landing platform, a fence, a complex structure
with a hole in the middle, and the bridge from Figure 1. They
have 12, 20, 58, and 62 robots, respectively. All structures

Algorithm 4: PAA(i,Z)
1 ZE = ComputeExpandedGoals(Z)
2 D-CAPT(xi,ZE)
3 Ti = D-ComputeAssemblyTree(i,V,Z, {})
4 PerformDockingActions(i,Zi)

successfully assembled as expected. In Figures 5(e)-5(f)
we represent the trajectories. It is possible to see how the
robots speed up to move towards the connection, and then
slow-down to form the attachment. It can be seen that the
attachments tend to be aligned horizontally or vertically.

The plots in Figures 5(i) to 5(l) show the evolution of
the completed attachments as a function of time. As a
consequence of the use of binary trees in the assembly
task, we can see that the structure is completed in time
O(Log(n)), since these structures can be decomposed into
balanced partitions. We tested with different shapes and
increased the number of robots from 12 to 60, as a result,
the assembly time was increased by only two time units. The
shape of the structure does not affect the upper bound of the
construction time, but it changes the number of attachments
in a given time step. The best case is when all the robots
are in a line, where the number of attachments follows a
logarithmic function of time, i.e. at the first time step, n/2
robots will be attached, then n/2 + n/4 and so on.

B. Experiments

In our experiments with actual robots, we designed a
holonomic square modular robot based on the Crazyflie aerial
vehicle platform [18]. The robot has four propellers which
are oriented to generate thrust in the plane. In this way, the
robot can move on surfaces with low friction, or adapted
to maneuver on water. In order to determine the robot pose
in space as well as relative locations for docking, we are
using a motion capture system (VICON) operating at 30 Hz.
All commands are computed in ROS and sent to the robot
via radio at 2.4 GHz. The docking mechanism is based on
passive actuators which in this case is composed of sixteen
magnets located in the corners of a cuboid cage. In Figure 6,
we show the robot and the configuration of its four propellers
and motors. Based on this configuration, the robot kinematics
are described by

ẋ = Av,

where the vector ẋ ∈ R3 represents the velocities along the
x and y axes, and the robot’s angular velocity. The vector
v = [v1, v2, v3, v4], vi ∈ R≥0 represents the linear velocities
generated by each actuator. The transformation matrix for
this given configuration is defined by

A =

cos(π/4) cos(3π/4) cos(−3π/4) cos(−π/4)
sin(π/4) sin(3π/4) sin(−π/4) sin(−3π/4)
−1/r 1/r −1/r 1/r

 ,
where r is the distance from the propellers to the center of
the robot.

Since the actuators can only generate positive thrust, we
need a method to compute feasible solutions where vi ≥ 0.
Solving the linear system by computing the pseudo-inverse
of matrix A does not always satisfy the constraints. For this
reason, we model the problem as an optimization problem
where we need to minimize the function

min(‖ẋ−Av‖2),
s.t vi ≥ 0.
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Fig. 5. Simulations for four different configurations. Panels (a)-(d) show the following structures: a landing platform, a fence, a complex shape with a
hole in the center, and a bridge. The trajectories of the robots are presented in Panels (e)-(h), the dashed-line-boxes represent the robots in their expanded
locations ZE , the continuous-line-boxes represent the their final destinations Z , and the dots represent the robot locations on time. Panels (i)-(l) show the
evolution of completed attachments on time.

We solve this optimization problem using the Sequen-
tial Least SQuares Programming optimization algorithm
(SLSQP). In this way, we obtain feasible solutions for v
given the desired velocity ẋ.

During the experiments, the robot performs well in both
horizontal and vertical directions, which fits well with our
method to align the robots during the docking action. A
resultant configuration can be seen in Figure 7.

A factor that does not considerably affect the robot motion
is the prop wash because the propellers that generate specific
actions are sufficiently spaced apart. When a robot wants to
move either forward or sideways, it only uses two motors for
this action (e.g. it only uses v1 and v2 to move forward). For
this reason, in the case when multiple robots are attached,
the active propellers are separated by

√
2w/2.

In the attached video1, we present simulated and actual

1Link: https://www.youtube.com/watch?v=r9UDHhCWRQw

Fig. 6. Top view of the single holonomic modular robot that was used in
the experiments. The green arrows represent the velocities that each motor
is able to generate.

robots to assembly multiple structures. We can see how the
docking actions require time to align and move accurately.



Fig. 7. Five holonomic modular robots in a U-configuration. The robots
are attached by magnets on the corners of the carbon fiber cages.

Fig. 8. Undesirable configuration to build a structure. The robots are rep-
resented by the continuous-line-squares and the missing spot is represented
by the dashed line. In this U-shape, there is a spot that cannot be filled by
the red robot.

Due to friction and errors in the actuators, the robot motion
presents inaccurate translations and undesired rotations, but
the magnetic force in the cages fix up to 1cm of motion error.
Using our algorithm, each assembly process is completed,
even when some robots move slower than others.

C. Discussion

An alternative assembly method would be to “shrink”,
based on the expanded formation generated in Stage 1. The
disadvantage of this method is that robots would have to
generate precise docking actions at exactly the right time or
the structure would not be able to be completed. An example
of this would be the case when robots attaching to form one
side of a square platform do not simultaneously attach, and
therefore a “U” shaped spot is created in the side of the
structure. The robot assigned to this spot will no longer be
able to dock to the structure, as noted in [1], we illustrate
that case in Figure 8. The main difficulty is mainly due to
multiple moving robots trying to dock at the same time. PAA
eliminates the potential of this case occurring, since it is
based on docking pairs of independently joined components.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a decentralized algorithm
to assemble structures with modular robots. Our approach
drives the robots to autonomously assemble a structure in
the planar space. Since docking actions are a bottleneck
in the assembly process, our algorithm parallelizes these
actions while avoiding collisions and undesired attachments.
We show the generality of our algorithm using simulations.
Through experiments with actual robots, we show that our
algorithm can be deployed in real-settings.

The future directions of this work include the extension
of our current approach to different robot shapes, such as
hexagons, as well as different ways of splitting the compo-
nents. In our algorithm, we have to expand the graph in order
to create enough space, and to avoid undesired collisions.
We plan to study how to attach the robots in environments
with obstacles, where the robots cannot expand in specific
directions.
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