
This paper has been accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, 2021.©IEEE

Finding Structure Configurations for Flying Modular Robots

Bruno Gabrich1, David Saldaña2, and Mark Yim1

Abstract— Flying Modular Structures offer a versatile mech-
anism that can change the arrangement of constituent actuators
according to task requirements. In this work, we extend a
modular aerial platform that can expand its actuation capabil-
ities depending on the configuration. Each module is composed
of a quadrotor in a cage that can rigidly connect with other
modules. The quadrotor is connected with the cage by a revolute
joint that allows it to rotate with respect to the cage. Modules
located in the structure are either parallel or perpendicular to
one another. The task specification defines forces and moments
needed during the execution. We propose two search methods to
find a configuration that can satisfy the specification. The first
approach consists of an exhaustive search that yields optimal
structure configurations by exploring the whole search space.
The second approach proposes a heuristic based on subgroup
search, reducing the problem complexity from exponential
to linear. We validate our proposed algorithms with several
simulations. Our results show that the proposed heuristic is
computationally efficient and finds a near-optimal configuration
even for flying modular structures composed of a large number
of modules.

I. INTRODUCTION

Flying modular robots have been rapidly explored in
recent years due to the ease and accessibility of small and
low-cost quadrotors. The use of quadrotors as the smallest
system element enables the system to self-assemble in midair
forming 2-D rigid structures [1], [2]. Before this, flying
modular structures successfully performed self-assembly on
the ground [3]. Different types of structures with different
numbers of modules were successfully assembled. Because
these structures have rotors aligned in parallel, they are only
capable of controlling four degrees of freedom (i.e., as in
traditional quadrotors) even though the conglomerate has
many more than four motors.

The major advantage of flying modular robots over other
cooperative flying systems is the ability to self-reconfigure
in midair [1], [4] and adapt to varied tasks or in response to
faulty modules in the system [5]. Scaling modular robots by
increasing the number of modules implies an increase in the
system complexity and cost of the platform, thus simplicity
at the modular level is a desired feature. Modular robots
lie at the intersection of versatility and robustness [6],[7],[8]
due to self-reconfiguration. A system that allows modular
robots to complete high-level tasks was developed in [9],

1 B. Gabrich, M. Yim are with the GRASP Laboratory,
University of Pennsylvania, Philadelphia, PA, USA: {brunot,
yim}@seas.upenn.edu.

2 D. Saldaña is with the Autonomous and Intelligent Robotics
Laboratory -AIRLab-, Lehigh University, Bethlehem, PA, USA:
saldana@lehigh.edu.

The authors would like to thank Aaron Weinstein for the discussions,
ideas, and the introduction to the simulation framework.

Fig. 1. A flying modular structure composed of 64 modules in a square
configuration following a desired trajectory.

by enabling modules to autonomously self-reconfigure. In
[10], self-assembling boats formed floating structures. In [11]
and [12], in-flight grasping capabilities were embedded to
the flying modular system. This was the first investigation
of non-rigid passive connections between flying modules
enabling grasping of objects without a gripper or manipulator
arm attachment. In [13], Zhao et al. explored a novel design
for flying modular robots using modules composed of two
degree of freedom joints and a dual-rotor gimbal, which
allowed the flying vehicle to change the angles between
modules in-flight.

One of the limitations of ModQuad [1] is the loss of
yaw control as the number of modules scale up due to
actuator saturation. The work developed in [14] investigated
cases for which quadrotors could tilt and achieve unique roll
attitude angles enabling a novel yaw actuation method that
enlarges the number of modules that flies in cooperation in
a line configuration. Furthermore, pointing thrust vectors at
different orientations could lead to better utilization of the
system’s redundancies. In [15], [16], [17], [18] the authors
explored platforms capable of thrust vector at different
orientations resulting in fully-actuated 6 DOF (degree of
freedom) systems.

In this work we introduce configuration search methods
for arbitrary modular configurations utilizing the 1-DOF
design presented in [14]. By allowing only 1-DOF at the
modular level we simplify design, cost and avoid additional
constraints imposed by spherical joints due to its usual range
of motion limitation. By the utilization of flying modular
robots one could design a structure capable to exert forces



This paper has been accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, 2021.©IEEE

and moments with specific maximum magnitudes at specific
directions. Given this forces and moments capabilities, these
robots could be used to transport a payload, fly over a specific
path or even execute non-prehensile manipulation of objects
with proper structure configurations.

The contribution of this paper is twofold. i) We extend
the system actuation capabilities of the work presented in
[14] by allowing arbitrary configurations to be assembled.
This extension allows the structure to be fully actuated
for specific configurations. ii) The task specification defines
forces and moments needed for execution. We propose two
search methods to find a configuration that can satisfy this
specification. One finds the optimal structure configuration
with a high computational cost, and the other finds a near-
optimal structure configuration through a computational ef-
ficient solution.

II. SYSTEM MODEL AND DEFINITIONS

The building block of our platform is called module.

Definition 1 (Module). refers to a flying vehicle with a cage
capable of docking with other modules.

Each module has a mass m and an inertia tensor I.
Multiple modules can self-assemble to form a structure.

Definition 2 (Structure). refers to the composition of n
modules docked together in the same plane.

Modules in a structure are indexed by i = 1, ..., n. The
structure frame S is located at the structure center of mass.
Modules frame Mi and flying vehicle frame Qi are located
and the center of mass of each module. Later we define
the world frame W and illustrate all frames in Fig. 2.
The structure inertia tensor is denoted by IS . Furthermore
r∗S , ṙ

∗
S ,r̈∗S denotes linear structure translation, velocity and

acceleration in W . The structure’s angular velocity and
acceleration in frame S are ΩS and Ω̇S respectively. φi, φ̇i,
φ̈i indicate module’s roll angle, velocity and acceleration in
the same order in Mi. The superscript ∗ designates desired
values for any entity. Considering each module as a rigid
body, its pose and configuration space is in SE(3). The
configuration space of a flying structure composed of n
modules is SE(3)× (S1)n.

Definition 3 (Module Configuration). refers to parallel or
perpendicular orientation of module i x-axis relative to S.

Definition 4 (Form Configuration Fc). refers to a set of
points in S that represents the position of n docked modules.

Definition 5 (Structure Configuration). refers to the com-
position of module and form configuration.

The structure orientation in W is represented by RWS ∈
SO(3), and RSMi

∈ {Rz,k π2
: k = 0, 1}. RSMi

is module
configuration dependent and represents the orientation of
each module w.r.t. S, where Rz,k π2

is a rotation matrix
around the z-axis. RMi

Qi ∈ {Rx,φi} is flight behavior
dependent and represents the flying vehicle frame w.r.t.Mi,

Fig. 2. A six modules structure configuration in a rectangular form
configuration. Each module has its module configuration determined by its
yaw orientation relative to S.

whereas Rx,φi is a rotation matrix around the x-axis. The
translational dynamics is then defined by

nmr̈S = −nm g e3 + RWS
∑
i

RSMi
RMi

Qi e3

∑
j

fij ,

where g is the gravity constant, e3 = [0, 0, 1]>. fij cor-
responds to the force produced by actuator j = 1, ..., 4 of
module i, which in fact, are our system control inputs. Given
these definitions the rotational dynamics is defined as follows

ISΩ̇S + ΩS × ISΩS =
∑
i

rSi ×RSMi
RMi

Qi e3

∑
j

fij ,

where rSi = [rxi, ryi, 0]> is the ith module position in S.
The structure inertia tensor can be approximated to IS =
nI +m

∑
i Diag[r2

iy, r
2
ix, (r

2
iy + r2

ix)], which comes from the
parallel axis theorem.

III. FLYING MODULAR STRUCTURE CONTROL

Before introducing our configuration optimization meth-
ods (in Section IV), we define a SE(3) controller for arbi-
trary structure configurations; initiating from a desired pose
and arriving at the quadrotor actuator level. Our approach
consists of four steps. First, a desired pose trajectory is used
to compute structure desired forces and desired moments.
Second, the desired structure behavior is distributed for all
modules. Third, thrust and desired roll is computed. Third,
the actuator distribution is outlined and control inputs are
obtained.

A. Structure Desired Wrench

Based on a geometric controller [19], a centralized struc-
ture pose control takes as inputs a pre-defined trajectory,
T :=(r∗S(t),RW∗S (t)), that is utilized to compute structure
forces and moments as follows

F∗SS = nmRSW(r̈∗S+Kp(r
∗
S−rS)+Kd(ṙ

∗
S−ṙS)+ge3), (1)

M∗
S = IS(KReR −KΩΩS) + ΩS × ISΩS , (2)

where Kp, Kd, KR and KΩ are positive gain matrices, and
eR is the orientation error that can be written as

eR =
1

2
(RSWRW∗S −RS∗WRWS )∨,



This paper has been accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, 2021.©IEEE

Fig. 3. Singular and non-singular configurations for structures composed of
3 modules. The two singular configurations on the left cannot move laterally
along the x and y-axis respectively. The other two singular configurations
on the right have respectively a x− z and y − z moments coupling.

where the operator ∨ is the vee map from SO(3) to R3. From
(1) and (2), we obtain a desired structure wrench W∗ =
[F∗SS ,M∗

S ]>.

B. Module Force Distribution

The obtained wrench serves as a reference to compute
desired force vectors for each module in the structure. Each
module has a force F∗Mi

i the effect of all module forces
produces a wrench in the structure

W = SFM , (3)

where F∗M = [F∗M1>
1 , . . . ,F∗Mn>

n ]> is the vector that
compiles all module forces, and S ∈ R6×3n is the structure
configuration matrix. S can be written as the product of three
matrices

S = P̄R̄Īc, (4)

where P̄ ∈ R6×3n is interpreted as the position matrix, R̄ ∈
R3n×3n the orientation matrix and lastly Īc ∈ R3n×3n a
matrix that constraints modules forces to be produced on its
x-axis. This constraint is a system feature shown in Fig. 2,
meaning that FMi

i = [0, Fyi, Fzi]
>. Therefore, (3) can be

expanded as

W =

[
I . . . I

P̂1 . . . P̂n

]RSM1
. . .0

. . .
0 . . .RSMn


Ic . . .0. . .

0 . . . Ic

FM , (5)

where I = Diag[1, 1, 1], Ic = Diag[0, 1, 1], P̂i = [rSi ]× is
the skew symmetric matrix of each module position in S.

The structure wrench has fixed dimension whereas force
vectors depend on the number of modules. For structures
with more than three modules, the system can be redundant
depending on module configuration; and therefore, an opti-
mal way to control the structure wrench needs to be defined.
In order to find a solution that minimizes module forces we
use quadratic programming.

Quadratic Programming for Force Distribution: Solutions
for F∗M can be obtained through the formulation of the
following quadratic program minimization, which takes into
account feasible forces to each module. This optimization is

Fig. 4. Flying Modular Structure Control Diagram.

described as follows

min
F∗M

1

2
F∗M>F∗M

s.t.
∥∥W∗ − SF∗M

∥∥2

2
= 0,

FMmin ≤ F∗M ≤ FMmax,

(6)

where the vector operator ≤ compares element by element,
FMmin represents lower bound constraints whereas the upper
bound is represented by FMmax. We solve this optimization
problem using the quadprog-function from MATLAB.

Solutions for module forces are of the kind FMi
i =

[0, Fyi, Fzi]
>. Thus, each module force has two independent

variables. Therefore, in order for rank(S) ≥ 6 a condition
of n ≥ 3 needs to fulfilled. Furthermore, with the goal to
guarantee full rank control of S, both form configuration
and module configuration are required. For instance, three
modules in a line form configuration cannot be full rank. On
the other hand, three modules that form a corner may or may
not have full rank. Figure 3 shows eight of the same form
configuration, but different module configurations, four that
are singular and four not.

C. Thrust and Decentralized Attitude Computation

In order to compute a modules’ thrust and attitude, a
similar approach described in [14] is used. The thrust of
the ith flying vehicle can be computed using the following
relation

Fi = F∗Mi
i ·RMi

Qi e3.

Later, F∗Mi
i is used to compute a desired orientation of the

ith flying vehicle, defined as RMi∗
Qi =

[
b∗i1 b∗i2 b∗i3

]
,

through the following relations

b∗i3 = F∗i /‖F∗i ‖ ,bi1 = [1, 0, 0]>,b∗i2 = b∗i3 × bi1.

The roll angle is the only DOF to be individually set on each
flying vehicle, thus φ∗i = arctan(b∗2iz/b

∗
3iz) is the desired

roll angle computation. Unlikely previous work, we note
that quadrotors only use two input commands: thrust Fi and
desired roll angle φ∗i .

D. Attitude Controller and Actuator Distribution

In order to obtain actuator forces for each flying vehicle
the angular accelerations are computed as φ̈i = Kp,φ(φ∗i −
φi)+Kd,φ̇(φ̇∗i−φ̇i), where Kp,φ and Kd,φ̇ are positive gains.



This paper has been accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, 2021.©IEEE

Therefore the ith thrust and ith moments around x can be
related to the ith control input as follows[

Fi
Mxi

]
=

[
1 1 1 1
yi1 yi2 yi3 yi4

]
ui, (7)

where Mxi = Ixφ̈i are flying vehicle moments around its x-
axis and ui = [fi1, fi2, fi3, fi4]>. Applying a pseudo-inverse
transformation to (7) we find the following control inputs

fij =
Fi
4

+
Mxi

4yij

where yij is the actuator j distance in y from Qi. Because
yi1 = ... = yi4, the pseudo-inverse equally distributes actua-
tor effort. Arriving at the actuator level distribution allows us
now to control structures of flying modular robots along pre-
defined trajectories. However, the question remains: what are
the optimal structure configurations that are more suitable for
a specific path.

IV. MODULE CONFIGURATION SEARCH

In this section, we propose to find optimal and near-
optimal structure configurations for a given path and number
of modules. More specifically we introduce a module con-
figuration search that minimizes control effort along a pre-
defined trajectory T and a pre-defined form configuration
Fc(r

S
1 , ..., r

S
n). For a baseline, we developed an algorithm

that finds optimal solutions by exploring all possible combi-
nations in the search space. This Exhaustive Search checks
all module configuration combinations, and has complexity
exponential in n. In scenarios for which n is large and
multiple changes in the form configuration and trajectory
are required, a faster method to compute module configu-
rations is desirable. We propose a greedy approach that is
near-optimal, but computationally efficient, called SubGroup
Search. It first uses our Algorithm 2 to divide the structure
into layers and create subgroups within each layer and
according to the module’s Euclidean distance to S. Using this
approach, the search applies to each subgroup instead of the
whole structure search space, thus decreasing substantially
the module configuration space to be explored.

For both Exhaustive Search and SubGroup Search methods
the optimization problem can be defined as follows

min
k

∫ tf

0

‖u(t)‖2 dt

s.t. k ∈ {0, 1}n ,

where k embeds the binary module configuration constraints
associated to all modules within the structure and u =
[u1, . . . ,un]>. As described in Section II and III each
module is either perpendicular or parallel to one another,
and these features are embedded in k for later computation
of RSMi

(k) ∈ {Rz,k π2
: k = 0, 1} and consequently

the structure matrix S(k). Therefore, both search methods
outputs a vector k corresponding to modules configurations
that minimizes control effort along a pre-defined trajectory.

Algorithm 1: ExhaustiveSearch

1Input: form configuration Fc, trajectory T
2Output: Optimal module configurations π

2 kmin

1 emin ←∞
2 K← {BinaryVector(q, n)| q = 1, ..., 2n}
3 foreach k ∈ K do
4 S← StructureConfiguration(Fc,

π
2 k)

5 u(t)← SimulateTrajectory(S,T )

6 e←
∫ tf

0
‖u(t)‖2 dt

7 if e < emin then
8 emin ← e
9 kmin ← k

10 return π
2 kmin

Algorithm 2: CreateSubGroups

1Input: form configuration Fc

2Output: SubGroups G
1 G← ∅
2 A← {xi | i = 1, ..., n} ∪ {yi | i = 1, ..., n}
3 A← SortUnique(A)
4 foreach ` ∈ A do
5 L` ← {i| (xi = ` ∧ y ≤ `) ∨ (yi = ` ∧ y <

`), i = 1...n}
6 D← {‖ri‖ | i ∈ L`}
7 D← SortUnique(D)
8 foreach d ∈ D do
9 Gd ← {i | ‖ri‖2 = d, i ∈ L`}

10 G← G ∪ {Gd}
11 return G

Algorithm 3: SubGroupSearch

1Input: SubGroups G, trajectory T
2Output: module configurations π

2 kmin

1 emin ←∞
2 k← 0
3 kmin ← k
4 foreach Gd ∈ G do
5 nd ← |Gd|
6 for k = 1 to 2nd do
7 k[Gd]← BinaryVector(q, nd)
8 S← StructureConfiguration(G, π2 k)
9 u(t)← SimulateTrajectory(S,T )

10 e←
∫ tf

0
‖u(t)‖2 dt

11 if e < emin then
12 emin ← e
13 kmin ← k
14 return π

2 kmin

A. Exhaustive Search

Given a form configuration Fc and a specific trajectory T ,
an approach that searches all possible module configurations



This paper has been accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, 2021.©IEEE

Fig. 5. Exhaustive Search Flow Diagram. Search used for structures
composed of small number of modules and yields optimal modules con-
figurations.

is described in Algorithm 1 and illustrated in Fig. 5. This
approach generates all possible binary combinations of k.
For each combination, a structure matrix S is computed and
a simulation along T is performed. The Exhaustive Search
returns optimal module configurations that minimizes control
effort along the whole path.

Searching for all possible combinations is only feasible
for a small number of modules. The number of configura-
tions the algorithm has to check is O(2n). Simulating each
configuration for structures composed of a large number of
modules would be computationally intractable.

B. CreateSubGroups Algorithm

For the SubGroup Search method we first propose an
algorithm that receives a form configuration Fc as an input,
and outputs the subgroups G. The motivation for creating
subgroups comes with the goal to reduce the search space.

Figure 6 illustrates Algorithm 2 which creates subgroups
for structure configurations. Initially, a set of distances to the
x and y-axis for all modules are created, then sorted from
large to small and duplicate elements are removed in Lines
2-3. Those distances define the structure layers. For each
distance to the axes, a set of modules that belong to layer
L are created in Lines 4-5. Then each layer is divided in
subgroups that share same Euclidean distance in S. In this
way, each subgroup ∪Gd has modules that belong to the
same layer and have equal Euclidean distance to the center
of mass.

C. SubGroup Search

Given a trajectory T and subgroups G from Algorithm 2,
we propose Algorithm 3 to find a near-optimal configuration,
but reducing the search space. Using subgroups within a
structure allow us to reduce the search space by only
exploring all possible configurations within each subgroup
(Fig. 7). The reasoning behind this approach comes from
the Modules Force Distribution described in Section III-B.
The quadratic-programming optimization results in modules
located further in frame S to have larger impact in the struc-
ture behavior during flight. This characteristic is imposed by
the quadratic-programming approach, since the minimization
of the objective function in (6) yields force vectors of bigger
magnitudes to modules located far from the structure center
of mass. Therefore, we can conclude that these modules, in
fact, produce bigger moments to the conglomerate compared
to modules located closer to the center.

Fig. 6. Top view of three distinct expanded structure configurations and
its subgroups. Two subgroups G = G1 ∪ G2 are created for a symmetric
cross form configuration composed of 12 modules. Three subgroups G =
G1 ∪ G2 ∪ G3 are created for a square form configuration composed of
20 modules. Four subgroups G = G1 ∪ G2 ∪ G3 ∪ G4 are created for an
asymmetrical cross form configuration composed of 20 modules.

Fig. 7. SubGroup Search Flow Diagram. Search used for structures of
large number of modules and yields near-optimal modules configurations.

We want to take advantage of modules with highest
performance impact and with this in mind we choose to
optimize the structure configuration in dependent sequential
steps by using subgroups. Because we are not searching
the whole structure configuration space anymore, we need
to define an initial search point for Algorithm 3 to start.
The specific singular configuration k = 0, is set to be our
initial structure configuration in the search, once generically
singular configurations are poor solutions for an arbitrary
problem. The initial search point is set in Line 2, then
search initiates at subgroup Gd which is located at the
structure edges. Then all possible module configurations
(k[Gd]) within that subgroup are computed. It is important
to notice that module configurations from other subgroups
are untouched and the method keeps the configuration that
minimized control effort by only exploring subgroup Gd.
Because subgroup Gd is located at the structure edge, it is
then the subgroup that contains modules that could contribute
the most for the structure moments control. This is why



This paper has been accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, 2021.©IEEE

subgroup Gd is chosen to be optimized at first, once the
idea is to obtain the maximum in terms of performance
from its modules. Next, the algorithm moves to subgroup
Gd−1 and exploration of all module configurations within
that subgroup takes place. We would like to highlight that
at this level the optimization of subgroup Gd−1, uses as an
additional information the optimized configuration obtained
for subgroup Gd as well as the remaining configuration states
of the untouched subgroups. In other other words, we can
say that for each subgroup optimization we need to know
the full structure configuration, even though search takes
place locally within each subgroup. With this reasoning,
the algorithm keeps moving inwards within the structure,
optimizing in a sequential manner each subgroup, until
subgroup G1 is reached.

Number of configurations: In Algorithm 3, the number
of configurations to check is the most important factor to
analyze as simulation in Line 9 is the most computationally
expensive step. The for-loop in Line 6 is a critical point
that can lead to an exponential number of configurations to
check. However, the size of Gd is guaranteed to be always
smaller or equal to eight by applying Algorithm 2. Since
Gd ⊂ L`, the number of elements in Gd is constrained by
the layer with the largest number of modules. The worst
case scenario is a square structure of v × v modules, its
last layer has a square shape with 4(v − 1) modules. In
this layer, Line 9 restricts Gd to hold only modules that
share the exact same Euclidean distance to S. Because of the
discretized nature of the grid, alignment of the modules and
configurations are chosen with only two lines of symmetry,
there can be at most eight modules in Gd. Finally, the main
foreach-loop in Line 5 is called at most n times. All the
elements in G are disjoint sets of modules, therefore, the
number of groups in G has to be smaller or equal than n. This
leads us to conclude that the number of configurations to be
checked and simulated are O(n). Fig. 8 shows the number
of configurations to be checked by the Exhaustive Search
algorithm and the SubGroup Search algorithm. The baseline
does not depend on the form configuration of the structure
since it checks every possible combination. In contrast, the
SubGroup Search is form configuration dependent to define
subgroups on the layers. For two scalable structures, a square
and a line, we can see that the square grows at a higher rate
than the line configuration, but both cases are linear with
respect to the number of modules n.

V. SIMULATION

We evaluated the scalability and performance of our pro-
posed methods in a developed MATLAB simulator. Based
on the given Fc and T , we execute our algorithms to find
optimal and near-optimal configurations. Our control model
assumes that quadrotors can generate instantaneous forces
along the module y-axis. Our simulator includes quadrotors
inertia around its x-axis for the system dynamics and our
controller arrives at the actuator level of the flying vehicle.
This makes the simulator more realistic and also shows that
for small flying vehicles our controller assumption applies.

0 20 40 60 80 100
n

0

1000

2000

3000

4000

N
um

b
er

of
co

nfi
gu

ra
ti

on
s

SubGroup Search for square config.

SubGroup Search for line config.

Baseline

Fig. 8. Number of configurations to be evaluated by the Exhaustive Search
(Baseline) algorithm and the SubGroup Search algorithm.

Fig. 9. Exhaustive Search emin compared to the SubGroup Search emin

applied to distinct form configurations of n = 10, and for a given Lissajous
curve T . Four distinct structure configurations composed of 10 modules are
tested using both search methods.

Figure 9 shows a performance comparison between the
Exhaustive Search and SubGroup Search. The plot shows
the accumulated error along a trajectory illustrating perfor-
mances of both searches for distinct form configurations
composed by the same number of modules. The plot com-
parison is made for structures of 10 modules. For n ≥ 10
the Exhaustive Search starts to become impractical. The
number of configurations to be checked by this method is
210 for n = 10 whereas the SubGroup Search reduces it
to 24 + 24 + 22. For the SubGroup Search the number of
configuration scales linearly with n, although we cannot say
that the algorithm time complexity scales at the same rate. In
Algorithm 3, the necessity to recompute a large configuration
matrix S ∈ R6×3n and its pseudo-inverse at each time step
causes the algorithm time complexity to grow at a faster rate
even though the search space reduction is preserved.

With the SubGroup Search producing near-optimal results,
we can then simulate larger number of modules. A structure
composed of 36 modules was tested along a Lissajous
curve trajectory. For this trajectory RW∗S (t) is always an
identity matrix, therefore the desirable structure orientation
along the whole path is parallel to the xy plane. Fig. 10
shows the structure flight behavior for those conditions.
Very small deviations for the orientation can be verified.



This paper has been accepted for publication at IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, 2021.©IEEE

Fig. 10. 36 modules in a square form configuration performing a flight
along a Lissajous curve T . The Subgroup Search algorithm was utilized to
generate the illustrated modules configuration for the given structure.

Fig. 11. 64 modules in a square form configuration performing a flight
along a Lissajous curve T . The Subgroup Search algorithm was utilized to
generate the illustrated modules configuration for the given structure.

Along the same lines the desired position is tracked in a
satisfactory manner. It is important to note that whenever our
algorithm cannot find feasible forces for a desired wrench
along a trajectory, the simulator stops and switches to the
next possible modules configuration. This feature speeds up
our algorithm in the process of finding near-optimal struc-
ture configurations. Similarly, simulations for 64 modules
(Fig. 11) in a square form configuration demonstrates the
dynamic response of the structure with the proposed SE(3)
controller. The dynamic response for 36 and 64 modules in a
square form configuration not only demonstrates the validity
of the controller approach proposed, in fact it also shows
that the modules configuration generated by the SubGroup
Search are controllable and yields satisfactory solutions.

Modules configurations can then be computed in a faster
manner even for flying structures composed of a large
number of modules.

VI. CONCLUSION AND FUTURE WORK

In this work a configuration generalization of the system
presented in [14] is introduced. A flying structure controller
that takes as inputs trajectories in SE(3) was presented along
two configuration optimization search methods. We demon-
strated through simulation results that the Exhaustive Search
yields optimal module configurations utilizing a costly search
method whereas the SubGroup Search yields near-optimal
results though the configuration space to be explored was
substantially reduced. The results obtained from the proposed
search method shows an important contribution for comput-
ing configurations for flying modular structures composed of
a large number of modules.

In future work, we aim to extend this study to the form
configuration level of the structure. Optimization of both
module and form configuration would allow us to design

flying modular robots capable to perform a diverse range of
tasks by self-reconfiguration. Furthermore, we plan to add
constraints to our controller to handle scenarios in which
forces that keeps modules docked together are limited.

REFERENCES

[1] D. Saldaña, B. Gabrich, G. Li, M. Yim, and V. Kumar, “Modquad:
The flying modular structure that self-assembles in midair,” in 2018
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2018, pp. 691–698.

[2] G. Li, B. Gabrich, D. Saldaña, J. Das, V. Kumar, and M. Yim,
“Modquad-vi: A vision-based self-assembling modular quadrotor,” in
2019 International Conference on Robotics and Automation (ICRA).
IEEE, 2019, pp. 346–352.

[3] R. Oung and R. D’Andrea, “The distributed flight array,”
Mechatronics, vol. 21, no. 6, pp. 908–917, 2011. [Online].
Available: http://dx.doi.org/10.1016/j.mechatronics.2010.08.003

[4] D. Saldaña, P. M. Gupta, and V. Kumar, “Design and control of aerial
modules for inflight self-disassembly,” IEEE Robotics and Automation
Letters, vol. 4, no. 4, pp. 3410–3417, 2019.

[5] N. Gandhi, D. Saldana, V. Kumar, and L. T. X. Phan, “Self-
reconfiguration in response to faults in modular aerial systems,” IEEE
Robotics and Automation Letters, vol. 5, no. 2, pp. 2522–2529, 2020.

[6] M. Yim, D. G. Duff, and K. D. Roufas, “Polybot: a modular recon-
figurable robot,” in ICRA, 2000, pp. 514–520.

[7] K. Stoy, D. Brandt, D. J. Christensen, and D. Brandt, Self-
reconfigurable robots: an introduction. MIT press Cambridge, 2010.

[8] M. Yim, W.-M. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, and
E. Klavins, “Modular Self-reconfigurable Robot Systems: Challenges
and Opportunities for the Future,” {IEEE} Robotics \& Automation
Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[9] J. Daudelin, G. Jing, T. Tosun, M. Yim, H. Kress-Gazit, and M. Camp-
bell, “An integrated system for perception-driven autonomy with
modular robots,” Science Robotics, vol. 3, no. 23, 2018.

[10] I. O’Hara, J. Paulos, J. Davey, N. Eckenstein, N. Doshi, T. Tosun,
J. Greco, J. Seo, M. Turpin, V. Kumar, and M. Yim, “Self-assembly
of a swarm of autonomous boats into floating structures,” Proceedings
- IEEE International Conference on Robotics and Automation, pp.
1234–1240, 2014.

[11] B. Gabrich, D. Saldaña, V. Kumar, and M. Yim, “A flying gripper
based on cuboid modular robots,” in 2018 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2018, pp. 7024–
7030.

[12] M. Zhao, K. Kawasaki, X. Chen, Y. Kakiuchi, K. Okada, and M. Inaba,
“Transformable multirotor with two-dimensional multilinks: Model-
ing, control, and whole-body aerial manipulation,” in International
Symposium on Experimental Robotics. Springer, 2016, pp. 515–524.

[13] M. Zhao, T. Anzai, F. Shi, X. Chen, K. Okada, and M. Inaba,
“Design, modeling, and control of an aerial robot dragon: A dual-rotor-
embedded multilink robot with the ability of multi-degree-of-freedom
aerial transformation,” IEEE Robotics and Automation Letters, vol. 3,
no. 2, pp. 1176–1183, 2018.

[14] B. Gabrich, G. Li, and M. Yim, “Modquad-dof: A novel yaw actuation
for modular quadrotors,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2020, pp. 8267–8273.

[15] M. Ryll, H. H. Bülthoff, and P. R. Giordano, “Modeling and control
of a quadrotor uav with tilting propellers,” in 2012 IEEE International
Conference on Robotics and Automation. IEEE, 2012, pp. 4606–4613.

[16] M. Ryll, D. Bicego, and A. Franchi, “Modeling and control of fast-hex:
A fully-actuated by synchronized-tilting hexarotor,” in 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2016, pp. 1689–1694.

[17] M. Ryll, G. Muscio, F. Pierri, E. Cataldi, G. Antonelli, F. Caccavale,
and A. Franchi, “6d physical interaction with a fully actuated aerial
robot,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 5190–5195.

[18] H.-N. Nguyen, S. Park, J. Park, and D. Lee, “A novel robotic platform
for aerial manipulation using quadrotors as rotating thrust generators,”
IEEE Transactions on Robotics, vol. 34, no. 2, pp. 353–369, 2018.

[19] T. Lee, M. Leoky, and N. McClamroch, “Geometric tracking control
of a quadrotor UAV on SE(3),” 49th IEEE Conference on Decision
and Control (CDC), 2010., pp. 5420–5425, 2010.


