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Abstract— This paper presents an algorithm to do motion
planning for a new class of self-reconfigurable modular robot:
the variable topology truss (VTT). Modular robots consist of
many modules that can be configured into various structures,
and motion planning problem for modular robots with many
degrees of freedom and many motion constraints is a significant
challenge. In this paper, we propose a novel motion planning
algorithm for modular robots to handle this problem with huge
state space inspired by DNA replication process — the topology
of DNA can be changed by cutting and resealing strands as
tanglements form. In a variable topology truss, a single node
with enough edge modules can split into a pair of nodes and
two separate nodes can be merged to become an individual
one. This self-reconfiguration ability results in more potential
applications for this type of robots in unstructured environment,
such as space and underseas but also leads to more challenges
for reconfiguration planning. A novel way to model the robot
in a nonuniform grid space is presented and a simple local
planner is also developed to check the validation of possible
actions. This approach significantly simplifies the problem and
some experiment results show that the complicated problem
can be solved in a reasonable time.

I. INTRODUCTION

Self-reconfigurable modular robots are composed of many
repeated building blocks (modules) from a small set of types.
Often all modules have uniform docking interfaces that allow
transfer of mechanical forces and moments, electrical power,
and communication throughout the robot [1]. One type of
modular robotic system is a reconfigurable truss structure.
One class of truss robots is commonly called a variable
geometry truss (VGT) [2], in which the truss members have
variable length, such as TETROBOT [3]. A variable topology
truss (VTT) is similar to VGT with additional capability
to self-reconfigure the attachment of members at the nodes,
changing its topology by merging or splitting nodes [4]. Two
separate nodes in the truss can dock to form one node which
connects all of the involved members. Similarly, a single
node with a sufficient amount of members can undock into
a pair of nodes. Hence, the variable topology truss system
has both the efficiency benefits of VGTs and the flexibility
of self-reconfigurable robots [5].

An example application using VTT structures aims to
build a robot system that can be deployed into a disaster
scenario shown in Fig. 1 [4]. The robot is mobile (forming
truss legs, or tumbling [6] ) and can move into buildings
and reconfigure into large support structures to reinforce
the building, shoring to prevent further collapse as first
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Fig. 1. A variable topology truss can reconfigure itself into different
configurations with respect to different tasks.

responders search for victims. This application exploits the
inherent large strength to weight ratio of truss structures.

We define a configuration to be the set of truss member
link lengths and their node assignments. The assignments of
links to nodes defines the topology and link lengths define
the shape. The output of a reconfiguration motion planner is
the sequence of actions to transform the robot from a start
configuration to a goal configuration, e.g. Fig. 1.

VTT systems are composed of edge modules which in-
clude both the linear actuator and two ends that have the
ability to dock onto other ends [4]. The end positions fully
determine the state of the system. Each configuration has
constraints on the arrangement of edge modules to guarantee
controllability. This includes making sure the topology of the
modules nominally form a statically determinate truss. This
means every node will have at least 3 members attached
(each node is of degree 3 or higher). Because these structures
have multiple loop constraints, we cannot map actuator DoF
to system DoF. Instead it becomes more convenient to map 3
DoF to node translation positions and back out the required
truss member lengths to achieve that position. Another
side effect of these constraints are that reconfigurable VTT
systems have at least 18 members [4] (18 actuated DoF),
thus motion planning for these systems can have very high
dimension.

Since topological reconfigurations also happen at nodes,
we consider all actions to occur at nodes. For example, if a
set of edge modules E1 intersect at node v1, and another set
of edge modules E2 intersect at node v2, then the states
of these edge modules can be changed by manipulating
node v1 and v2, including changing the locations of them,
merging v1 and v2 or splitting if v1 and v2 are already
merged. For some simple cases, translating the nodes small
distances in the space can happen without collision. However,
in many instances translating nodes will often lead to the
truss members colliding with other truss members. In many
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of those cases, there may not be a path for that node to
reach a goal location without collision given the topology
of the configuration. Traditional motion planning methods
would require analysis of the motion, geometric reasoning
of the topological spaces in which collision can occur and
reconfiguration planning to change the topology if required.

This paper presents a novel method of motion planning
combined with limited reconfiguration to enable motions of
nodes without regarding to internal collision via reconfigu-
ration. This behavior is similar to DNA replication in which
topoisomerase can change the topology of DNA by cutting
and resealing strands as tanglements form [7]. This paper
presents an algorithm inspired by DNA motion to solve this
fundamental reconfiguration problem.

The rest of the paper is organized as follows. Sec. II
reviews relevant and previous works. Sec. III introduces
the variable topology truss configuration and formalize the
problem. Sec. IV discusses the algorithm, including how
the space is discretized, the transition model and actions,
collision check method and graph search algorithm. Some
experiment results are shown in Sec. V. Finally, Sec. VI
talks about the conclusions and future work.

II. RELATED WORK

The variable topology truss was first introduced in [8].
The hardware concepts and challenges associated with the
planning, control and implementation were discussed. The
reconfiguration ability of the system was analyzed in [4].
Then some useful techniques for reconfiguration planning
of variable topology system was discussed in [5] and a
modified retraction-based RRT algorithm was designed for
VTT reconfiguration planning. However, this still needs to
handle a huge and complicated configuration space with high
dimensions when moving a node around and intermediate
configurations with different topology have to be specified
manually when topology reconfigurations involved.

A divide-and-conquer approach for reconfiguartion plan-
ning of modular robots was published by Casal and Yim [9].
Two algorithms are presented which are based on graph rep-
resentation of configurations and a substructure set resulting
in a hierarchy construction of initial and goal configura-
tions. There are also other graph-based algorithms developed
for different chain-type modular robots in [10] [11] [12]
and [13]. However, these algorithms are not applicable to
VTT’s because they do not account for the common case
above where node motions require reconfiguration to avoid
self-collision. [14] presented a distributed reconfiguration
planning algorithm based on some concepts and the bottom-
up algorithm to compute maximum common subconfigura-
tion (MCS) in [15]. This algorithm relies on the motion
capability of each individual module which is not applicable
to VTT.

A shape morphing algorithm for linear actuator robots
(LARs) is presented in [16]. This system is made up of linear
actuators connected at universal joints into a network. [17]
presented a shape morphing idea for VTT based on a new
approach to compute the collision-free configuration space

for nodes. Our work differs from these work in that the
motion involved is not just changing the geometry shape of
the structure but also the robot graph topology.

This paper presents a new motion planning framework for
variable topology truss, with which the robot can change
its shape autonomously and quickly, including geometry
reconfiguration action which only moves the node positions
and topology reconfiguration action which has to split or
merge nodes. A new method to discretize the space nonuni-
formly is proposed so that discrete actions can be applied
for a motion task and the space can be explored efficiently.
This method is the combination of exact cell decomposition
method and approximation method. The cells are determined
based on truss geometry and then are subdivided into octants.
Different from common octree decomposition [18], cells are
not necessarily to be cubic. Collision-free actions can be
computed efficiently and a sequence of optimal reconfigura-
tion actions are generated by simple graph search algorithm.
We demonstrate this algorithm on some motion tasks and
necessary analysis is provided.

III. ROBOT CONFIGURATION

A variable topology truss can be viewed as a special
type of parallel robot — constructed by linear actuators
connected at special node joints. Hence, the structure of
a variable topology truss can be modeled as an undirected
graph G = (V,E) where V is the set of vertices of G and
E is the set of edges of G: each member can be regarded
as an undirected labeled edge e ∈ E of the graph and
every intersection among members can be treated as a vertex
v ∈ V of the graph. Every v ∈ V has two properties: ID
and Pos where ID is used to label the vertex and Pos is
used to define the Cartesian coordinates of the vertex namely
v[Pos] = [vx, vy, vz]

ᵀ ∈ R3. In this way, the state of a
member is fully defined by Pos properties of its two vertices
written as e = (v1, v2) where v1 and v2 are two vertices of
edge e.

Since two separate nodes in VTT can dock to form one
single node which connects all of the involved members and
a single node can undock into a pair of nodes [4] (as long
as there are no less than six members) shown in Fig. 2,
the number of nodes can change. However, the number of
members in a system are physical elements which cannot
merge or disappear so that the number must remain constant.

In this paper, the fundamental reconfiguration problem can
be stated. For a variable topology truss G = (V,E), the
goal is to change the state of edge module e ∈ Ê from its

Fig. 2. A single node with six members can be splitted into a pair of nodes
and two separate nodes can also merge into a single node.



initial state to its goal state in which Ê ⊂ E. However, as
the discussion above, edge modules have to be controlled in
form of a group because their states can only be modified by
manipulating the involved nodes. For any e = (v1, v2) ∈ E
in a variable topology truss configuration G = (V,E), let
v1 [Pos] = e [v1] and v2 [Pos] = e [v2], then the current
state of this edge module e is fully defined by e [v1] and
e [v2]. Assume ∀e ∈ Ê intersect at node v̂, then the motion
task is, ∀e ∈ Ê, change e [v̂] from [xi, yi, zi]

ᵀ to [xg, yg, zg]
ᵀ.

IV. MOTION PLANNING ALGORITHM
A. Grid Space Model

Planning in discrete space makes it possible to efficiently
plan a sequence of discrete actions for a complicated mo-
tion task. However, when discretizing space, discretization
resolution is an important issue. There is a trade-off for
different discretization resolution: too fine resolution results
in a large search space — too coarse resolution may bring
about no solution for a motion task even if there exists a
valid path. This problem is especially significant for modular
robots, such as a variable topology truss, which may have
high dimensional spaces. Here we present a novel way to
represent the system in a discretized workspace for a given
variable topology truss which we call the grid space.

The automatically generated grid space has a stepsize
that adapts depending on the density of the space. A small
exploration stepsize is used for high occupancy subspace and
large exploration stepsize for low occupancy subspace. The
density is a function of the node positions of both the initial
variable topology truss configuration and a goal variable
topology truss configuration. Let V be the set containing
all nodes with unique locations and its size is N . Firstly all
of these node locations are extracted in x-axis, y-axis and
z-axis respectively:

X = {vx|v ∈ V }
Y = {vy|v ∈ V }
Z = {vz|v ∈ V }

Sort X , Y and Z in nondecreasing order to generate three
sequences X̂ , Ŷ and Ẑ respectively. For each sequence, if
two adjacent elements are the same or very close, keep only
one element. Use the parameter δ to set the threshold for
closeness. Note that δ will often be some fraction of the size
of the truss. Then, for every two adjacent elements (e.g. xi
and xj), insert a midpoint between them (e.g. (xi + xj)/2)
into the list as an intermediate position. This will subdivide
each cell in space into octants like octree decomposition.
With the final three sequences generated as follows:

X̂ = {x0, x1, · · · , xNx
}

Ŷ = {y0, y1, · · · , yNy
}

Ẑ = {z0, z1, · · · , zNz
}

the following conversions from grid space to Cartesian space
in x-axis, y-axis and z-axis can be obtained respectively:

fx(ix) = xix ix = 0, 1, · · · , Nx (2a)

Fig. 3. Two dimensional example with four nodes and three members
with δ = 0.1. The generated grids are shown with “- -” and coordinates in
Cartesian space are in dark blue color and coordinates in grid space are in
light green color.

fy(iy) = yiy iy = 0, 1, · · · , Ny (2b)

fz(iz) = ziz iz = 0, 1, · · · , Nz (2c)

the inverse conversions (from Cartesian space to grid space)
are:

f−1x (x) = arg min
ix∈{0,1,··· ,Nx}

|x− xix | (3a)

f−1y (y) = arg min
iy∈{0,1,··· ,Ny}

|y − yiy | (3b)

f−1z (z) = arg min
iz∈{0,1,··· ,Nz}

|z − ziz | (3c)

Then the conversion from grid space to Cartesian space can
be defined as

f([ix, iy, iz]
ᵀ
) =

[
xix , yiy , ziz

]ᵀ
(4)

and the conversion from Cartesian space to grid space can
be defined as

f−1([x, y, z]
ᵀ
) =

[
f−1x (x), f−1y (y), f−1z (z)

]ᵀ
(5)

Note that this is a nonuniform grid space. Given a variable
topology truss configuration G = (V,E) in Cartesian space,
there is a corresponding variable topology configuration G =
(V, E) in grid space. A two dimensional example is shown
in Fig. 3. Both Cartesian space and grid space coordinates
are shown. It is apparent that, given a conversion between
Cartesian space and grid space, different VTT configurations
in Cartesian space may results in the same VTT configuration
in grid space.

A truss example is shown in Fig. 4a and the equivalent
truss in grid space is shown in Fig. 4b. In Cartesian space,
the truss is a slightly deformed cube. The mapping in grid
space is a regular cube with eight cells generated inside the
cube.

Note that the non-uniform resolution is different than
octree decompositions where a subdivision results in cells
that are equally divided into cubes. Here the x-axis y-axis



(a) (b)

Fig. 4. (a) A Truss in Cartesian Space and (b) The Equivalent Cubic Truss
in Grid Space with δ = 0.2

and z-axis divisions may not be uniform. In addition, since
the divisions are derived directly on the location of nodes,
there are fewer subdivisions than those may occur in octree
where the number of subdivisions can become large if the
nodes are slightly off from an even division.

Once the conversion between Cartesian space and a grid
space is computed, a VTT configuration can be simplified —
if two nodes are very close and are third degree neighbors
or higher, those nodes can be merged into one. This is
determined by the parameter δ. There are some constraints
for δ: Its value cannot be too large since the edge modules
have a non-zero minimum length.

B. Node Motion Model and Reconfiguration Actions

Even though actuators are located in the truss members, it
is not convenient to do motion planning in the joint space of
those actuators. Instead it is more convenient to do motion
planning from the viewpoint of node motions, doing the
inverse kinematics to determine what link lengths will yield
those node positions. This is similar to parallel robot motion
planning where inverse kinematics is much easier than the
forward kinematics.

After the nonuniform grid space is computed, we can
model the motion of a node as discrete actions. The dis-
crete action can be a geometric reconfiguration action or a
topology reconfiguration action.

In grid space, we define 27 different possible discrete
geometric motion actions for a free node shown in Fig. 5.
The cube centered on the free node can be defined by its

Fig. 5. In grid space, a node • can move to 27 different locations with one
discrete action, defined to be the 27 points of intersection between lines in
the figure including the center of the cube which is the no motion action.

two corners: [0, 0, 0]
ᵀ and [2, 2, 2]

ᵀ. Note that the cube in
this grid space is not necessarily a cubic shape in Cartesian
space.

For a node in a variable topology truss, there are some
constraints on the motion that the node can execute. Every
node has to be attached to at least three members in order to
maintain controllability. If a node is controlled by six or more
members, this node can be split into a pair of controllable
nodes with multiple ways to split the involved members. For
example, if a node is controlled by six members, there are
10 different ways to split six members into two groups of
three. However, if a node is controlled by five members, then
there is no way to split this single node as both nodes need
to have at least three members.

We can exploit the reconfigurability of nodes to ease the
collision free motion planning problem. If a node moves to a
location in grid space that is already occupied by a node, then
the corresponding moving action will end up with a merge
action. In this way, we do not need to worry about collisions
of nodes. For the VTT system, there are three possible atomic
actions for a specific node: Move, Merge and Split. Since
only one node may exist in a discrete location in grid space,
there are four different combinations of atomic motion for a
node:

a =





Move
Split + Move
Move + Merge
Split + Move + Merge

(6)

in which we define a to be the discrete reconfiguration
action. Note that not all actions are executable because
some actions may violate constraints resulting in a not valid
motion.

As the reconfiguration process proceeds, some nodes may
disappear and some nodes may appear. Let V̂ ⊂ V contain
the current nodes intersected by edge modules in Ê. Initially,
V̂ = {v̂} because all edge modules in Ê intersect at node
v̂. When the discrete reconfiguration action occurs, V̂ may
change accordingly. For example, if v̂ is split into v̂′ and
v̂′′, then V̂ = {v̂′, v̂′′}, or if v̂ is merged with another
node v̄, then V̂ = {v̄}. For each node in V̂ , the same
reconfigurability analysis can be applied to generate all
possible actions and the states of involved edge modules in
set Ê will be changed accordingly. To minimize the search
space for all possible actions, in this work, only one node is
active, which means if there are multiple nodes in V̂ , apply
action a for only one node.

C. Collision

Each node is controlled by multiple members and, in fact,
this can be modeled as a parallel robot. When controlling a
node to execute a motion action a, we are actually controlling
a parallel robot to move in a complex environment occupied
by many other edge modules. It is not straightforward
to compute the collision-free space for this parallel robot
directly but we can exhaustively check collision for every
pair of members during the motion. For example, for a VTT
configuration G = (V,E), node v ∈ V is going to execute
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Fig. 6. Light green triangle (M) is sweeped by member e when moving
node v to new location v′ along the yellow (→) trajectory and the new
position of member e is e′. e doesn’t collide with any other members in
(a) but does collide with two members in (b) during the motion.

an action a, and the involved member set is Ev . We need
to check whether any e ∈ Ev will collide with any other
edge module in set E\Ev during the motion action process.
Every edge module can be modeled as a line segment in
space, thus, for every e ∈ Ev , naı̈vely we can just check the
intersection between a moving line segment and a still line
segment. This is actually not easy. With our nonuniform grid
space and node motion model, the node is actually moving
along a line segment. Hence, we present an easier and more
efficient method to do collision check.

For a VTT configuration G = (V,E) and a node v ∈ V ,
once a reconfiguration action a is executed, every moving
member in Ev sweeps a triangle area (Fig. 6a), and if this
member e ∈ Ev collides with another member ē ∈ E\Ev ,
then ē must intersect with the triangle M generated by e
(Fig. 6b). There are two cases: ē is not parallel to M and ē
is parallel to M. For the first case, there are already many
efficient algorithm to test the intersection between a line
segment and a triangle in 3D space, such as Möller-Trumbore
ray-triangle intersection algorithm [19]. For the second case,
it is just a simple 2D geometry math problem.

D. Transition Model

A transition model is required to describe the effect of a
reconfiguration action on a VTT configuration. For a VTT
configuration G = (V,E), given a discrete reconfiguration
action a, a new VTT configuration G′ = (V ′, E′) is able
to be computed by transition model F(G, a) if action a is
executable.

The transition model process is shown in Fig. 7. Given a
VTT configuration G = (V,E) and a reconfiguration task,
the grid space can be computed as described in Sec. IV-A.
A corresponding VTT configuration G = (V, E) in this grid
space can be computed, where for each v ∈ V , its corre-

Constraints

VTT VTT
Grid

VTT

Grid

VTT

action

Fig. 7. Transition Model Diagram

sponding position in grid space v [Pos] can be computed
by Eq. (5). Then we can apply the discrete action a on the
corresponding node of the VTT configuration G = (V, E)
in grid space to obtain the new states of all involved edge
modules. With Eq. (4), the new position of the corresponding
node (the intersection of these involved edge modules) can
be calculated. Constraints need to be satisfied in Cartesian
space. Only collision-free criteria is considered here but it is
straightforward to add more constraints. An action satisfying
all constraints is an executable reconfiguration action. There
are four different types of reconfiguration actions shown in
Eq. (6). For geometry reconfiguration actions, just apply
the model in Sec. IV-C. For actions containing topology
reconfiguration actions, apply collision check for only Move
action because Split and Merge never cause any collision.
Once the action is verified to be executable, the new VTT
configuration in Cartesian space is obtained.

E. Graph Search Algorithm

With the transition model, it is straightforward to do
motion planning by graph search algorithms. Two VTT
configurations can be connected by an edge if and only
if there is an executable reconfiguration action taking the
first VTT configuration to the second VTT configuration. We
can start from the initial VTT configuration and stop until
the goal configuration is visited. A graph search algorithm
designed based on A∗ framework is shown in Algorithm 1.

Line 1 — 5: Compute the nonuniform grid space and the
equivalent initial VTT configuration and goal VTT configu-
ration in this grid space. Also make two sets Q and Q̄ where
Q contains all newly computed VTT configurations or non-
visited VTT configurations in grid space and Q̄ contains
all visited VTT configurations in grid space. The size of
these two sets will change as the algorithm explores the
configuration space. It is not feasible to compute all possible
VTT configurations as the number grows exponentially in
the number of members. At the beginning, only initial VTT
configuration and goal VTT configuration are in set Q and
the algorithm starts with the initial configuration. The value
g(G) is the cost of the path from Gi to a VTT configuration
G, so g(Gi) = 0 and g(Gg) =∞ at the beginning.

Line 7 — 10: Every iteration always starts with the VTT
configuration with the smallest cost r(G) in set Q and
r(G) = g(G) + h(G) where h(G) is a heuristic function
of configuration G that estimates the cost of the cheapest
path from G to Gg . The heuristic value can be related to
the distance from the current location to the goal location
of every moving node. In the beginning, the initial VTT
configuration has the smallest cost. Then update set Q and
Q̄. The connection information among VTT configurations
are not fully known, thus we need to try all possible actions
for these moving members to create connections. Recall that
only one node is active for each reconfiguration step, so the
total number of all executable reconfiguration actions is not
large and the worst case is C3

|Ê| (the total number of all

combinations of |Ê | elements in Ê taken three at a time) for
edge set Ê .



Algorithm 1: Graph Search Algorithm
Input: Initial VTT configuration Gi = (Vi, Ei), edge

set Ê, the intersection node v̂ and goal state
of e [v̂] in which ∀e ∈ Ê

Output: Tree of VTT configuration graphs
1 Compute nonuniform grid space;
2 Compute corresponding VTT configurations
Gi = (Vi, Ei) and Gg = (Vg, Eg) in grid space and
the corresponding edge set Ê with ∀e ∈ Ê
intersecting at node v̂;

3 Q = {Gi,Gg};
4 Q̄ = ∅;
5 g(Gi)← 0, g(Gg)←∞;
6 while Gg = (Vg, Eg) ∈ Q do
7 Ḡ ← arg min

G∈Q
r(G) = arg min

G∈Q
(g(G) + h(G));

8 Q ← Q\Ḡ;
9 Q̄ ← Q̄+ {Ḡ};

10 Compute action set A containing all possible
executable reconfiguration actions for set Ê in
grid space;

11 for ∀a ∈ A do
12 G = F(Ḡ, a);
13 if G(V, E) /∈ Q̄ then
14 if G(V, E) ∈ Q then
15 if g(Ḡ) + c(a) < g(G) then
16 g(G)← g(Ḡ) + c(a);
17 p(G)← Ḡ
18 end
19 end
20 else
21 Q ← Q+ {G};
22 g(G)← g(Ḡ) + c(a);
23 p(G)← Ḡ
24 end
25 end
26 end
27 end
28 return p

Line 11 — 26: For every executable action a ∈ A, we can
obtain a new connection with another VTT configuration by
transition model. If this VTT configuration has been visited,
then this connection is not a new connection. If not, then
there are two cases: this configuration is not a newly found
configuration which means there is already a connection
between this configuration and another VTT configuration,
or this configuration is a new one which has no connection
before. For the first case, we need to check whether its value
needs to be updated. c(a) is the cost of the current action
a. We should set the topology reconfiguration action cost a
relative higher value because, for modular robots, docking
and undocking are usually difficult. If its value is updated,
then its parent p(G) is also updated accordingly. For the
second case, initialize the value and parent of this new VTT

Fig. 8. Initial VTT Configuration

configuration, and update set Q.
Once Gg = (Vg, Eg) is visited, then the algorithm ends.

With p, a tree with visited VTT configurations as vertices,
it is straightforward to find the path connecting the initial
VTT configuration and goal VTT configuration as well
as the optimal reconfiguration actions sequence. With this
algorithm, there is no need computing all possible VTT
configurations which is usually very time-consuming and the
tree is built as we explore VTT configurations.

V. EXPERIMENT

The algorithm is implemented and tested with some tasks.
Two reconfiguration examples are presented. The initial VTT
configuration G = (V,E) is shown in Fig. 8. The location
of each node is in the following

v0 [Pos] = [0.05, 0, 0]
ᵀ

v1 [Pos] = [0.1, 1.8, 0]
ᵀ

v2 [Pos] = [2.1, 1.9, 0]
ᵀ

v3 [Pos] = [2.1, 0, 0]
ᵀ

v4 [Pos] = [0, 2.1, 3.1]
ᵀ

v5 [Pos] = [1.95, 0.9, 3]
ᵀ

v6 [Pos] = [0, 0, 2.9]
ᵀ

In order to explore and search the graph efficiently, a
suitable model of action cost and a good heuristic function
are necessary. There are three different fundamental actions:
Move, Split and Merge. The action cost model in our
experiment is that the cost of Move action is the moving
distance and the cost of Split or Merge is 1. The heuristic
function is

h(G) =





∑
v∈V̂
‖vg [Pos]− v [Pos] ‖+ 1, |V̂ | > 1

‖vg [Pos]− v [Pos] ‖, |V̂ | = 1

in which vg [Pos] and v [Pos] are the goal location and
current location of node v respectively, and |V̂ | is the size
of set V̂ . Recall that V̂ ⊂ V contains all the current nodes
intersected by edge modules in Ê and if there are more
than one node in set V̂ , then there must be at least one
Merge action afterwards, so the heuristic value is the sum
of Euclidean distance for every node from its current location
to its goal location plus one. Due to the collision avoidance
constraints, this heuristic function h(G) must be less than or
equal to the cost of moving from G to Gg , so the algorithm
is guaranteed to find the optimal action sequence (or shortest
path).



Fig. 9. ∀e ∈ {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)},
move e [v5] from initial location to goal location. With only geometry
reconfiguration action, edge module (v1, v5) will collide with edge module
(v3, v4).

1) Scenario 1: The first reconfiguration task is shown
in Fig. 9. The task is to move edge module set
Ê = {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)}
and they all intersect at node v5. ∀e ∈ Ê, move e [v5] from
its current position [1.95, 0.9, 3]

ᵀ to [1, 0.9, 3]
ᵀ which is very

close to its original position. However, this motion cannot
be executed by moving node v5 to the goal position directly
because edge module (v1, v5) will collide with edge module
(v3, v4). Topology reconfiguration action is needed for this
task.

The conversion between grid space and Cartesian space
is computed first with δ = 0.2 and the corresponding node
locations in grid space are

v0 [Pos] = [0, 0, 0]
ᵀ

v1 [Pos] = [0, 4, 0]
ᵀ

v2 [Pos] = [4, 4, 0]
ᵀ

v3 [Pos] = [4, 0, 0]
ᵀ

v4 [Pos] = [0, 4, 2]
ᵀ

v5 [Pos] = [4, 2, 2]
ᵀ

v6 [Pos] = [0, 0, 2]
ᵀ

and ∀e ∈ E, the goal location of e [v5] in grid space is
[2, 2, 2]

ᵀ. The lower bound of the grid space is [0, 0, 0]
ᵀ and

the upper bound of the grid space is [4, 4, 2]
ᵀ. In total, there

are 75 grid locations. The size of Ê is six and the number of
all possible arrangement for them in grid space is 75× 75×
(C3

6C
3
3/2) = 56250 and the size of action space is 56250×

52 = 2925000. However, the algorithm only explores 3771
VTT configurations and the sequence of optimal actions can
be found efficiently.

The solution by our motion planner is illustrated in Fig. 10.
We first move node v5 along −x-axis in grid space to a
closer location ([1.475, 0.9, 3.0]

ᵀ) in Cartesian space, then
split the node into a pair of nodes so that two groups of edge
modules can be controlled separately and move one of them
to the location [1.0, 1.35, 1.5]

ᵀ which is below the obstacle
edge module. This action moves the node with a longer
distance than the previous one because the space occupancy
is sparser along z-axis than that along x-axis. Next move
two newly generated nodes along −x-axis to [1.0, 0.9, 3.0]

ᵀ

and [0.5, 1.35, 1.5]
ᵀ respectively so that they can be merged

in the goal location in the last step.
2) Scenario 2: The second reconfiguration task is shown

in Fig. 11. The task is also to move edge module set
Ê = {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)}

Fig. 10. The sequence to change the states of involved edge modules
is shown and the motion directions are denoted as →. First move the
intersection node in a small step, and then split it into two separate nodes
and move one of the node downward in a large step. Move both nodes
closer and finally merge them in the goal location.

Fig. 11. ∀e ∈ {(v0, v5), (v1, v5), (v2, v5), (v3, v5), (v4, v5), (v6, v5)},
move e [v5] from initial location to goal location. With only geometry
reconfiguration action, there is no way for edge module (v0, v5) and
(v1, v5) to traverse edge module (v3, v4).

intersecting at node v5 and ∀e ∈ Ê, change e [v5] from
its current position [1.95, 0.9, 3]

ᵀ to [1, 1.2, 0.9]
ᵀ. The initial

position is almost on the boundary of the truss but the goal
position is almost in the center of the structure. Still with
only geometry reconfiguration actions, it is impossible to
finish this motion because edge module (v3, v4) is between
two edge modules (v0, v5) and (v1, v5).

Set δ = 0.2 to compute the conversion between grid space
and Cartesian space and the corresponding node locations in
grid space are

v0 [Pos] = [0, 0, 0]
ᵀ

v1 [Pos] = [0, 6, 0]
ᵀ

v2 [Pos] = [4, 6, 0]
ᵀ

v3 [Pos] = [4, 0, 0]
ᵀ

v4 [Pos] = [0, 6, 4]
ᵀ

v5 [Pos] = [4, 2, 4]
ᵀ

v6 [Pos] = [0, 0, 4]
ᵀ

and ∀e ∈ E, the goal location of e [v5] in grid space is
[2, 4, 2]

ᵀ. The lower bound of the grid space is still [0, 0, 0]
ᵀ

but the upper bound of the grid space is [4, 6, 4]
ᵀ. This

shows that how we decompose the space depending on the
motion task. For this motion task, finer cells in y axis and z
axis are generated with the same parameter δ. With higher
resolution, there are more grid locations, in this example 175.
The number of all possible arrangements for this set of edge
modules is 175 × 175 × (C3

6C
3
3/2) = 206250 and the size



Fig. 12. The sequence to change the states of involved edge modules
is shown and the motion directions are denoted as →. First move the
intersection node to the center by two Move actions, and then split them
into two separate nodes and move them in different directions to go around
the obstacle member. In the end, merge these two nodes into a single one.

of action space is 306250× 52 = 15925000 which is much
larger. However, the algorithm only needs to explore 8146
VTT configurations.

The solution is illustrated in Fig. 12. Similarly the con-
version between grid space and Cartesian space is computed
accordingly. Firstly, move node v5 to [1.525, 1.05, 2.9]

ᵀ and
then to [1.1, 1.2, 1.9]

ᵀ with a larger step because this part
of space is very sparse, and then split this node into a pair
of nodes so that six edge modules are separated into two
groups to go across the obstacle. Move one of them to the
goal location and move the other one to [0.55, 1.05, 1.9]

ᵀ to
bypass the obstacle, and then merge them at the goal location.

From these two examples, we can observe that there is
no uniform motion stepsize because the space occupancy is
different. This makes the reconfiguration planning algorithm
efficient to explore VTT configurations using graph search
algorithm.

VI. CONCLUSIONS

In this paper, we present a new reconfiguration planning
algorithm for a new class of modular robot — the vari-
able topology truss. This new robot is based on a truss
structure that enables a wide variety of applications. The
reconfiguration planning problem is challenging due to its
large topology configuration space. Being a truss presents a
variety of constraints to the inherent parallel robot planning
problems. We present a new method to discretize the space
called a grid space, considering the overall shape of the
robot and the motion task which results in a more efficient
decomposition of the configuration space. A robot is then
modeled in both Cartesian space and this non-uniform grid
space. Based on this new model, discrete reconfiguration
actions can be applied and an efficient collision checking
method is developed, and then a transition model is derived.
We can explore the VTT configuration space efficiently using
a graph search algorithm with a heuristic function to do
motion planning combined with topology reconfiguration.

The future work will focus on the effect of different

cost models and heuristic functions. Also more constraints
on reconfiguration actions need to be studied since the
system is over-constrained. We will also extend our work
to more complicated reconfiguration tasks and demonstrate
our algorithm on real hardware.
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