
Configuration Recognition with Distributed
Information for Modular Robots

Chao Liu and Mark Yim

Abstract Modular robots are usually composed of multiple blocks with uniform
docking interfaces that can be transformed into different configurations. It is a sig-
nificant challenge to recognize modular robot configurations composed of hundreds
of modules. Given a new configuration, it is important to match it to an existing
configuration and, if true, map each module to the module in this matching config-
uration when applying many modular robot control schemes. An efficient algorithm
is presented to address this matching and mapping problem by making use of dis-
tributed information from each module and new structure to design the configuration
library. The cluster is discovered and the root module is determined first. Then the
matching and mapping problem is solved simultaneously in polynomial time. The
algorithm is demonstrated on real modular robots and shown to be efficient to solve
this configuration recognition problem.

1 Introduction

Self-reconfigurable modular robots are usually composed of multiple building blocks
of a relatively small repertoire, with uniform docking interfaces that allow transfer
of mechanical forces and moments, electrical power, and communication through-
out the robot [1]. Numerous modular robotic systems have been developed in the
past few years. The design goal for modular robots is supposed to be versatile, ro-
bust and low-cost. Modular robots should be able to adapt or be adapted to many
different functions or activities, handle hardware and software failures, and also be
cost-effective to be used in more cost-sensitive tasks [2]. With these advantages,

Chao Liu
University of Pennsylvania, Philadelphia PA, e-mail: chaoliu@seas.upenn.edu

Mark Yim
University of Pennsylvania, Philadelphia PA, e-mail: yim@grasp.upenn.edu

1

2 Chao Liu and Mark Yim

modular robotic systems are promising to do a wide variety of tasks. However, it is
also a challenge to come up with planning and control algorithms to handle numer-
ous modules. One key reason is that, the number of all possible configurations of the
system increases drastically as the number of modules increases. Plus, each module
may have multiple degrees of freedom and the configurations in topology become
even more complicated. Hence, configuration recognition, namely matching a new
modular robotic configuration to an existing configuration in a library and mapping
each module in these two configurations, is an essential problem we need to solve
for planning and control of modular robots. Automatic configuration recognition is
the process by which a modular system can determine its own configuration without
having it explicitly programmed and a variety of its uses are described in [3]. In
addition to those applications, automatic configuration recognition is also necessary
for fully autonomous modular robots.

Graphs have been shown useful to represent modular robot configurations and
there are a number of techniques from graph theory that we can use. However, it has
been mentioned that the number of all possible configurations of modular robots
grows drastically as the number of modules increases, so it is challenging to put for-
ward an efficient algorithm for configuration recognition, which is even more dif-
ficult when taking the connection types between modules into consideration. This
paper presents a new representation of modular robot configurations and a polyno-
mial time algorithm for configuration recognition which can finish matching and
mapping problem simultaneously.

The paper is organized as follows. Sec. 2 reviews relevant and previous works.
Sec. 3 introduces the hardware platform which is used as an example in the paper
and how the local information is gathered. Sec. 4–5 discuss the design of library and
the algorithm with enough details. Some experiment results are shown in Sec. 6.
Finally, Sec. 7 talks about the conclusions and future work.

2 Related Work

Configuration recognition is an important part for modular robotics research. There
is a variety of work on this topic. Chen and Burdick [4] presented a method to enu-
merate the non-isomorphic assembly configurations of a set of modules. Assembly
incidence matrix (AIM) is used to represent a modular robot configuration. Park et
al. [3] compared three methods of matching and mapping, an automorphism group-
ing method (nauty), a spectral decomposition approach and a heuristic graph search
(3DLL). In particular, the nauty method first finds all graph isomorphism configura-
tions with the adjacency matrix of the given robot configuration and then finds the
matching configuration by checking the port-adjacency matrix and considering the
symmetry property of the modules. However, this method scales badly with increase
in the number of modules [3]. The spectral decomposition method is trying to find
the permutation matrix between isomorphic configurations which are represented
by port-adjacency matrices. This method requires more computation for structures

Configuration Recognition with Distributed Information for Modular Robots 3

with symmetry and numerical stability is a concern for large matrices, and the time
to compute eigenvectors becomes extremely long at very large scale. For the 3DDL
method, robots are represented by a three-dimensional linked list of module ob-
jects (3DDL) and some heuristics are evaluated in order to filter out most of the
configurations in the library with respect to all possible choices of origin module.
However, for different modular systems, different reasonable heuristics may need to
be designed and some heuristics can be invariant under some similar configurations
so that it cannot find the accurate matching. Also, the 3DLL method is specific to
CKBot and cube-oriented modules [3]. An algorithm based on the methods of lin-
ear algebra to recognize isomorphism between two configuration graphs of modular
robots is discussed in [5]. It is also focusing on the configuration matrix based on
the adjacency matrix and the complexity is O(n6 logn) in terms of manipulations
of elementary operations [5]. An improved 3DLL approach is presented in [6]. It
first finds all graph isomorphism configurations with the adjacency matrix (similar
to nauty) which may take a lot of time for configurations with large amount of mod-
ules [6] and then compare the configuration’s space representation list with those
in the library which requires the global position and orientation information with
respect to a base module, so it only works for modular systems with fixed discrete
states for each degree of freedom.

Butler et al. [7] presented distributed goal recognition algorithms but only to
solve the matching problem. Castano and Will [8] used directed graphs to represent
a modular robot CONRO and showed the corresponding configuration matrix can
be found and used for configuration identification. Baca et al. [9] also presented
a real-time distributed algorithm to discover the modules and the topology of the
configuration. They both only focused on the configuration discovery and didn’t
address the configuration recognition problem.

In this paper, a local algorithm to do cluster discovery of modular robots in linear
time is presented, and then a more efficient polynomial time algorithm for configu-
ration recognition is presented which requires a new design of library to store mod-
ular robot configurations so that the configuration matching and mapping problems
can be solved simultaneously. We also demonstrate this approach on a real modular
robotic system and experiment results and necessary analysis are provided.

3 Hardware Platform

A modular robotic system named SMORES is used as an example for analysis
and demonstration. SMORES is a modular robotic system published in 2012 and
SMORES-EP is the current version of the system where EP refers to the Electro-
Permanent magnets the module use for its connector [10]. Each module has four
active rotational degrees of freedom (pan, tilt and left/right wheels) and four con-
nectors which are equipped with an array of electro-permanent (EP) magnets as
illustrated in Fig. 1.

4 Chao Liu and Mark Yim

Fig. 1 A SMORES-EP mod-
ule with four active rotational
degrees of freedom and four
connectors using an array
of electro-permanent (EP)
magnets.

Left

Right

Pan

Tilt

LEFT Face

BOTTOM Face RIGHT Face

TOP Face

These four degrees of freedom are named LEFT DoF, RIGHT DoF, PAN DoF
and TILT DoF for convenience. In particular, LEFT DoF, RIGHT DoF and PAN
DoF can continuously rotate (no angular limits on rotation) to produce a twist mo-
tion of docking ports relative to the rest of the module, and TILT DoF is limited to
±90 degrees to produce a bending joint.

A SMORES module can be considered as a cube with four docking ports named
LEFT Face, RIGHT Face, TOP Face and BOTTOM Face for convenience. Each
face of the module can form a strong connection with other modules by the use
of four EP magnets arranged in a ring, with south poles counterclockwise of north
shown in Fig. 2. The ring arrangement of the magnets makes the connector able
to connect in four possible configurations. Also connected EP-Faces are able to
exchange data through the magnetic coupling of connected EP-magnets which are
capable of UART serial communication [10].

Each module also has a 802.11b wireless module configured to send and receive
UDP packets. A center computer is used to control the whole system and all modules
exchange data with the center computer via wireless network provided by a router.

(a) (b)

Fig. 2 (a) Internal view of magnets in EP-Face. (b) Internal view of EP-Face with circuit board.

Configuration Recognition with Distributed Information for Modular Robots 5

4 Configuration Topology and Library Design

A good configuration representation is helpful for configuration recognition. In par-
ticular, a modular robot configuration can be represented as a graph G = (V,E).
Each vertex of the graph represents a module and each edge of the graph repre-
sents the connection between two modules. This graph can then be converted into
an adjacency matrix and then a port adjacency matrix [3] or a configuration graph
matrix [5] which has been discussed in Sec. 2. A new representation is presented
in this section which can be used by our algorithm and SMORES modular robotic
system is used as an example.

Let G = (V,E) be an undirected graph, where V is the set of vertices of G and
E is the set of edges of G. For connections, some attributes have to be added for
modular robots which is discussed later. The maximum degree of a vertex is the
number of connectors the corresponding module has.

Graphs with only one path between each pair of vertices are trees. Any acyclic
graph is a tree. Some preliminaries on rooted trees are discussed here. Once a tree
G = (V,E) is rooted with respect a vertex τ ∈V , the parent of a vertex v ∈V is the
vertex connected to it on the path to τ which is unique except for τ , and the child of
a vertex v ∈ V is a vertex of which v is the parent. The configuration of a modular
robot cluster is represented as a rooted tree and the root has to be selected as the
center of its graph [11] defined as the following.

Definition 1 (McColm, 2004). Let T be a tree. The center of T is the unique vertex
(or unique pair of adjacent vertices) such that removing that vertex (or vertices) from
T leaves a collection of components each having less half the vertices of T .

Given a tree T and a vertex v, T −v is the result of removing v from T . If T −v is
connected, v is a leaf; otherwise, T − v consists of several acyclic components, and
if T − v has no components of order greater than n/2, v is a central vertex. This is
the rule to define the root for the graph of a given configuration.

A modular robot module usually has multiple connectors and there may also
be multiple ways to connect them. For each connection between two modules, the
involved faces and orientations are meant to be considered.

Definition 2. A connection between module u’s connector U Con and module v’s
connector V Con with orientation Ori is defined as

connect(u,v) = {Face : U Con,Face2Con : V Con,Orientation : Ori} (1)

from module u’s point of view and

connect(v,u) = {Face : V Con,Face2Con : U Con,Orientation : Ori} (2)

from module v’s point of view.

Each connection has three attributes: Face, Face2Con and Orientation, so mod-
ular robots can be connected in multiple ways and the number of all possible con-
figurations grows dramatically as the number of modules increases. However, some

6 Chao Liu and Mark Yim

Fig. 3 Connection with two
BOTTOM Faces. Orientation
is 0 in (a) and Orientation is 1
in (b).

(a) (b)

seemingly different connections can actually be considered equivalent. For exam-
ple, each SMORES module has four faces (LEFT Face, RIGHT Face, TOP Face,
BOTTOM Face) and each face can be configured to connect with any face of other
modules. Since there are no angular limits on rotation for LEFT DoF, RIGHT DoF
and PAN DoF, and EP-Faces are hermaphroditic, for connections among LEFT
Face, RIGHT Face and TOP Face, the connections in which only the Orientation
attribute is different are equivalent. In contrast, for connections between two BOT-
TOM Faces, the orientation is also needed to be considered and there are two differ-
ent orientations (Orientation = [0,1]) in total which is shown in Fig. 3. In addition,
the module is bilaterally symmetric, namely LEFT Face or LEFT DoF is a mir-
ror image of the RIGHT Face or RIGHT DoF, so all possible connections between
LEFT Face and RIGHT Face are also equivalent, namely all connections with LEFT
Face or RIGHT Face as their Face or Face2Con attribute are equivalent. We use ∼=
to denote the equivalent relation between two connections.

A three-module SMORES configuration example is shown in Fig. 4. For this
configuration, the connections can be expressed as following

connect(1,2) = {Face : TOP Face,Face2Con : TOP Face,Orientation : Null}
connect(2,3) = {Face : RIGHT Face,Face2Con : LEFT Face,Orientation : Null}

In addition, for this simple configuration, the root module can be defined as Module
2 according to Definition 1.

The library is a collection of modular robot configurations and each configuration
has its unique representation. The representation of each configuration contains the
corresponding rooted graph G, the information of all connections defined in Defi-

Fig. 4 (a) Three-module
configuration simulation. (b)
Three-module configuration
graph.

(a)

1

2

3

T
T

L
R

(b)

Configuration Recognition with Distributed Information for Modular Robots 7

nition 2 and all CN values described in Sec. 5.2. Some more properties can also be
added to configurations in the library, like robot behavior property, for other design
purposes. While, for configuration recognition, they are not necessary.

5 Algorithm for Configuration Recognition

We now present the modular robot configuration recognition algorithm that can
solve the matching and mapping problem simultaneously in polynomial time. The
algorithm contains three parts:

1. Discover the configuration of a cluster of modular robots;
2. Given a new modular robot configuration, decide the root module;
3. Verify if the configuration can be matched onto an existing configuration in the

library and, if true, map each module to the module in this known isomorphic
configuration.

5.1 Configuration Discovery

When a modular robot configuration is constructed, a fully autonomous robotic sys-
tem has to be able to figure out the configuration topology by itself, then the graph
representation can be discovered to represent its current configuration. This discov-
ery process is affected by the hardware design, especially how a module communi-
cates with its neighbors and the communication protocol. For the SMORES modular
robotic system, every module can talk to its neighbors via EP-Faces and sending and
receiving messages share the same route so that each EP-Face is either in sending
state or receiving state. In addition, the system requires a center controller to control
the whole cluster of modules. Each module can only exchange data with this center
controller via Wi-Fi and exchange data with other modules via EP-Face.

We present a centralized cluster discovery algorithm based on distributed infor-
mation among modules. The pseudocode is presented in Algorithm 1. The input to
this algorithm is a starting module. This module can be selected randomly. The out-
put is all the connections in this configuration. The idea is to traverse every module
in the breadth-first search order and record every connection one by one.

Line 9: The algorithm only checks faces that are not verified. Initially every face
of every module is not verified and each face can be verified via two conditions: a.
when a face is not verified in Line 9, mark it to be verified; b. when a face receives
messages in Line 13, mark it to be verified.

Line 10 — 12: Switch all not verified faces in the configuration to Receiving
Mode except F to wait for the message sent from F .

Line 13 — 16: If there is a connection that this face F is involved in, the con-
nected face F ′ should be able to receive the message sent from F . Then after some
certain time during which F is already switched to Receiving Mode in Line 14,

8 Chao Liu and Mark Yim

Algorithm 1: Configuration Discovery
Input: Start module S
Output: Configuration Connections

1 Create empty set V to store visited modules;
2 Create empty queue Q;
3 Q.enqueue(S);
4 while Q is not empty do
5 Current module C = Q.dequeue();
6 if C is not in V then
7 Add C to V ;
8 Create empty set NM to store newly recognized modules;
9 for Each Face F of C that is not verified do

10 for Each module M /∈V do
11 for Each Face F ′ of M that is not verified do
12 Switch F ′ to Receiving Mode;

13 Switch F to Sending Mode and send message;
14 Switch F to Receiving Mode;
15 Update connections;
16 Update NM;

17 Q.enqueue(NM−V);

the connected module will control F ′ to send out feedback message and turn off
the communication function for F ′ so F should receive this feedback message then
module C will also turn off the communication function for F . Only MAGNET 1 is
active when sending and all magnets are active when in Receiving Mode so that the
orientation can be determined by checking which magnet can receive message. Both
messages contain module ID and sending face information. Then both modules will
store the connection information. This connected module will then be added to set
NM in Line 16. If there is no connection, namely after some certain time F doesn’t
receive any feedback message, module C will also record that there is no connection
on F and turn off the communication function, and set NM will remain the same.

Once this process is done, every module stores its connection information locally
and the center computer will request this information from modules one by one. This
will then be used to build the graph representation of the configuration.

5.2 Root Module

The root module is defined to be the center vertex of the graph of a given modular
robot configuration. As discussed in Sec. 4, intuitively this can be done by itera-
tively removing each vertex in the graph and counting the number of vertices in
these generated acyclic components that requires the traversal of these subgraphs.
An efficient algorithm using dynamic programming to figure out the root module

Configuration Recognition with Distributed Information for Modular Robots 9

is presented here. The idea is to compute the order of all acyclic components af-
ter removing every vertex in the graph, and then find the one or a pair satisfying
the requirement. This problem has been solved in [12] in a distributed way in that
every module runs the same code and exchanges connection information with its
neighbors. This requires the robots to exchange more data and it is time-consuming
when coordinating all the modules and ensuring that they can receive data properly.
This is especially difficult for a system like SMORES where the sending mode and
receiving mode between connectors share the same route. Hence, we present this
centralized algorithm which uses local information from previous step.

Based on the gathered local information, the graph of the configuration G =
(V,E) can be built and rooted with respect to a random module v0. The parent and
children of any vertex v ∈ V are then determined. We denote the set of connectors
as C and define an array CNv(c) denoting the total number of modules connected
to v via its connector c ∈ C (as in [12]) which is the number of vertices of the
component of T − v corresponding to connector c (for SMORES modules, C =
{LEFT Face,RIGHT Face,TOP Face,BOTTOM Face}). The number of modules n
satisfies n = ∑c∈C CNv(c)+ 1, ∀v ∈ V and a configuration graph G can be rooted
with respect to all n vertices but CNv(c) is invariant under the root.

For any vertex v ∈ V that is not a leaf with respect to root τ , we denote its child
connected via its connector c as v̂c, the mating connector of v̂c as ĉ′, the set of its
children as N (v,τ) and the set of c connected with its children as Cd(v) ⊆ C . If
v ∈V has both a parent and some children, and N (v,τ) and Cd(v) are known, then

CNv(c) = ∑
ĉ∈C−ĉ′

CNv̂c
(ĉ), c ∈ Cd(v) and v̂c ∈N (v,τ) (3a)

CNv(c) = n−1− ∑
c′∈Cd(v)

CNv(c′), c /∈ Cd(v) (3b)

According to Definition 1, root module τ has to satisfy the following condition

CNτ(c)≤ 1
2

n, ∀c ∈ C (4)

We denote the descendants of v ∈ V with respect to root τ as desc(v,τ). With
the above recursive solution, solving CNv1(c1) and CNv2(c2) have overlapping sub-
problems if v2 ∈ desc(v1,τ). They both need to solve CNu(c), where u∈ desc(v2,τ)
and c ∈ Cd(u). A bottom-up algorithm is constructed. The pseudocode is presented
in Algorithm 2. The algorithm starts from vertices whose height are one. If v ∈ V
is a leaf, then Cd(v) = /0 and CNv(c) = 0 except when c is the connector connected
with its parent. For v ∈ V with h(v) > 0, N (v,v0) 6= /0 and Cd(v) 6= /0. We can
compute CNv(c) when c ∈ Cd(v) using Eq. (3a) and also compute CNv̂c

(ĉ′) where
h(v̂c)= h(v)−1 using Eq. (3b). In this iteration, CNv(c) where c /∈Cd(v) is not com-
puted which will be computed when visiting its parent vertex. After this iteration,
move to the modules with higher height and the algorithm ends until the predefined
root v0 is visited. It is clear that the root module can be found in time O(|V |).

10 Chao Liu and Mark Yim

Algorithm 2: Root Module Search
Input: Graph representation G = (V,E)
Output: Root module τ

1 Root G = (V,E) with respect to a module v0 with height of H and the height of v ∈V is
h(v);

2 Initialize CNv(c) for v ∈V and c ∈ C to be zero;
3 Initialize h← 1;
4 while h≤ H do
5 for Each module v with h(v) = h do
6 for Each module v̂c ∈N (v, τ̂) do
7 CNv(c) = ∑ĉ∈C−ĉ′ CNv̂c

(ĉ), c ∈ Cd(v);
8 CNv̂c

(ĉ′) = n−1−∑ĉ∈Cd (v̂) CNv̂c
(ĉ);

9 h← h+1;

10 return τ such that CNτ (c)≤ 1
2 n ∀ c ∈ C

5.3 Matching and Mapping

The configuration graph G = (V,E) can be rooted with respected to the root mod-
ule defined from Algorithm 2. Then given two configurations, we want to verify if
they are isomorphic in terms of modular robotic system topology and, if true, map
each module from one configuration to that in another configuration. Intuitively,
this can be solved by traverse the trees from the root to the leaves and check all the
edges and the corresponding CNv(c) values and, if the connections are equivalent
and CNv(c) are equal, then these two connections share the same topology. How-
ever, since modular robots are usually symmetric in their geometry, for example, for
SMORES system, the left side is a mirror image of the right side for each module,
there will be multiple candidates for some connection when trying to find the equiv-
alent one in the other configuration. It is a heavy computation burden to track all the
options and the number of cases to track can quickly grow.

If two modular robot configurations G1 = (V1,E1) and G2 = (V2,E2) are iso-
morphic, then each module v1 ∈ V1 must be able to be mapped to a unique module
v2 ∈V2 who shares the same topology and the number of mapped pairs of modules
are the number of modules in G1 or G2. Hence, if there exists this bijective mapping
f : V1 → V2, then G1 and G2 are isomorphic and f is the mapping we are looking
for. For each module v1 ∈ V1, there may be multiple modules in G2 that share the
same topology with v1 in G1. The idea of our algorithm is to try to find some pos-
sible mappings which result in multiple common subgraphs of both configurations,
and, if these two configurations are isomorphic, then there must be one common
subgraph containing all the modules that is also the isomorphism mapping.

Given two modular robot configurations G1 = (V1,E1) and G2 = (V2,E2), there
may be some common parts between them. Two definitions are introduced:

Definition 3. Given two modular robot configurations G1 = (V1,E1) and G2 =
(V2,E2), a common subconfiguration is a set of connected graphs {G′1,G′2} where

Configuration Recognition with Distributed Information for Modular Robots 11

G′1 = (V ′1,E
′
1) ⊆ G1, G′2 = (V ′2,E

′
2) ⊆ G2 such that G′1 and G′2 are isomorphic.

The corresponding bijective common subconfiguration mapping is defined as
f ′ : V ′1→V ′2.

Definition 4. Given the condition that module v1 ∈ V1 of G1 = (V1,E1) must be
mapped to module v2 ∈ V2 of G2 = (V2,E2), the common subconfiguration with
maximum common connections is called maximum common subconfiguration
with respect to v1 and v2 denoted as MCS(v1,v2) with mapping f : V̂1→ V̂2 where
V̂1 ⊆V1 and V̂2 ⊆V2. If a module pair (v′1,v

′
2) satisfies v′1 ∈ V̂1, v′2 ∈ V̂2 and f (v′1) =

v′2, then (v′1,v
′
2) ∈MCS(v1,v2) under f : V̂1→ V̂2.

Given two graphs G1 and G2 rooted with respect to τ1 ∈ V1 and τ2 ∈ V2 re-
spectively, for module v1 ∈ V1 and v2 ∈ V2, we can construct a common subcon-
figuration {G′1,G′2} where V ′1 = {v1, v̂

c1
1 }, V ′2 = {v2, v̂

c2
2 } under a subconfigura-

tion mapping f ′ : V ′1 → V ′2 such that f ′(v1) = v2 and f ′(v̂c1
1) = v̂c2

2 if and only if
connect(v1, v̂

c1
1) ∼= connect(v2, v̂

c2
2) which is called feasibility rule. We can make a

stronger feasibility rule by adding CNv1(c1) = CNv2(c2) then the rule becomes a
sufficient condition which is expressed as a form of a function F((v1,c1),(v2,c2)).
c1 is not necessarily to be equal to c2 because of the symmetry property of modules.

Theorem 1. Given MCS(v1,v2) under mapping f : V1 → V2, for any module pair
(v′1,v

′
2) ∈MCS(v1,v2) under f : V1→V2, MCS(v′1,v

′
2) is equal to MCS(v1,v2).

According to Theorem 1 and previous analysis, if F((v1,c1),(v2,c2)) is true,
then (v̂c1

1 , v̂c2
2) ∈ MCS(v1,v2) under f : V1 → V2 and MCS(v̂c1

1 , v̂c2
2) is equal to

MCS(v1,v2). Hence, whether computing MCS(v1,v2) is equivalent to computing
MCS(v̂c1

1 , v̂c2
2) depends only on F(v̂c1

1 , v̂c2
2). If two modular robot configurations

G1 = (V1,E1) and G2 = (V2,E2) are isomorphic, τ1 and τ2 are the only root mod-
ule of G1 and G2 respectively, then a common subconfiguration {G1,G2} under
mapping f : V1 → V2 must exist and this common subconfiguration is actually
MCS(τ1,τ2). There may be multiple options of f : V1→V2 because of the symme-
try property of the modules. The problem to compute MCS(τ1,τ2) can be converted

01

23

4

TL

T

T

LR

T

T

(a)

0

1 2

3 4

T

L

T

T

L

R

T

L

(b)

Fig. 5 SMORES Configurations. The subgraphs of (a) and (b) circled by ”- -” is an example of
common subconfiguration with mapping 1→ 1 and 0→ 2. The subgraphs of (a) and (b) circled by
”—” is MCS(1,1) with mapping 1→ 1, 2→ 0 and 0→ 2.

12 Chao Liu and Mark Yim

into the problem to compute MCS(τ̂c1
1 , τ̂c2

2) just by checking F((τ1,c1),(τ2,c2)).
This gives us the recursive solution to compute MCS(τ1,τ2) and the subproblem
is to solve MCS(τ̂c1

1 , τ̂c2
2) where c1 ∈ Cd(τ1) and c2 ∈ Cd(τ2). Whichever of these

MCSs is equivalent to MCS(τ1,τ2) is the solution and the corresponding mapping
f : V1→V2 is generated accordingly. For some configurations that may have a pair
of root modules while each configuration is only rooted with respect to one root in
the library, we just need to root this configuration with respect to both of the root
modules and compare both of them with that in the library. With this, we bring up a
bottom-up algorithm to check the isomorphism and map modules simultaneously.

The algorithm takes two rooted configuration graphs as input. Some preliminary
checks can be added here, like the height of trees, the number of modules in each
level and so on. If they fail these tests, they cannot be isomorphic because there can
be two root modules at most and, if two graphs are isomorphic, then they should
have the same root modules. We start this bottom-up algorithm from the modules
that are leaves of two given configurations and move generally to their roots. During
the process, all possible MCS which may be equivalent to MCS(τ1,τ2) are com-
puted and the corresponding mapping is generated. In the end, the one that contains
all the modules is the solution and the common subconfiguration mapping tells us
how to map each module. The pseudocode is presented in Algorithm 3. For any ver-
tex v ∈V with its depth d(v)> 0, we denote its parent connected via its connector c
as ṽc and the mating connector of ṽc as c̃′.

Line 8 — 9: It is possible that (v1,v2) or (ṽc1
1 , ṽc2

2) has been added to some MCSs
with respect to some pair of modules. MC S P is the set of all MCSs containing
(ṽc1

1 , ṽc2
2) with corresponding mapping fp . Similarly MC S C is the set of all MCSs

containing (v1,v2) with corresponding mapping fc.
Line 10 — 24: If F((ṽc1

1 , c̃′1),(ṽ
c2
2 , c̃′2)) is true, then MCS(v1,v2) is equal to

MCS(ṽc1
1 , ṽc2

2). When MC S P is empty but MC S C is not empty, then any
MCS(u1,u2) ∈MC S C is equal to MCS(v1,v2) from Theorem 1. Hence, as long
as ṽc1

1 /∈U1∧ ṽc2
2 /∈U2 , each MCS(u1,u2) is also equal to MCS(ṽc1

1 , ṽc2
2) and u1 and

u2 are updated accordingly. Then MC S is also updated which is to remove the old
MCS(u1,u2) if existing and add the new MCS(u1,u2). Similar to the previous case,
when MC S P is not empty and MC S C is empty, then, as long as v1 /∈P1∧v2 /∈P2,
MCS(p1, p2) is equal to MCS(v1,v2) and p1 and p2 are also updated. In addition, it
is possible that v1 ∈ P1∧v2 /∈ P2 or v1 /∈ P1∧v2 ∈ P2, then there is no MCS∈MC S
equal to MCS(v1,v2) or MCS(ṽc1

1 , ṽc2
2). So MCS(v1,v2) or MCS(ṽc1

1 , ṽc2
2) is a new

possible MCS which may be equal to MCS(τ1,τ2). Thus, we add MCS(v1,v2) with
mapping f : {v1, ṽ

c1
1 }→ {v2, ṽ

c2
2 } to MC S .

Line 25 — 27: If both MC S P and MC S C are empty, then MCS(v1,v2) or
MCS(ṽc1

1 , ṽc2
2) is a new possible MCS which may be equal to MCS(τ1,τ2). Thus,

we add MCS(v1,v2) with mapping f : {v1, ṽ
c1
1 }→ {v2, ṽ

c2
2 } to MC S .

Line 28 — 43: This is the last case when F((ṽc1
1 , c̃′1),(ṽ

c2
2 , c̃′2)) is true that both

MC S P and MC S C are not empty. MCS(u1,u2) ∈MC S C cannot be equal to
any MCS(p1, p2) ∈MC S P for the reason that the algorithm starts from leaves of
two given trees and multiple modules may share a parent but multiple modules can-
not have the same children. In Line 29 and Line 30 the algorithm checks if (v1,v2)

Configuration Recognition with Distributed Information for Modular Robots 13

Algorithm 3: Matching and Mapping
Input: Graph representations G1 = (V1,E1) with root τ1 and G2 = (V2,E2) with root τ2 where

h(G1) = h(G2) = H
Output: MCS(τ1,τ2) with f : V ′1 →V ′2

1 Create a set MC S = {MCS(null,null)} with a trivial mapping f : /0→ /0;
2 Initialize h← H;
3 while h > 0 do
4 for v1 ∈V1 with d(v1) = h do
5 MC S ′←MC S ;
6 for v2 ∈V2 with d(v2) = h do
7 if F((ṽc1

1 , c̃′1),(ṽ
c2
2 , c̃′2)) then

8 MC S P = {MCS(p1, p2) ∈MC S ′ fp : P1→ P2 | (ṽ
c1
1 , ṽc2

2) ∈MCS(p1, p2)};
9 MC S C = {MCS(u1,u2) ∈MC S ′ fc : U1→U2 | (v1,v2) ∈MCS(u1,u2)};

10 if MC S P = /0∧MC S C 6= /0 then
11 for MCS(u1,u2) ∈MC S C do
12 if ṽc1

1 /∈U1 ∧ ṽc2
2 /∈U2 then

13 Add (ṽc1
1 , ṽc2

2) to MCS(u1,u2) such that fc(ṽ
c1
1) = ṽc2

2 ;
14 u1← ṽc1

1 and u2← ṽc2
2 ;

15 Update MC S ;

16 else if MC S P 6= /0∧MC S C = /0 then
17 for MCS(p1, p2) ∈MC S P do
18 if v1 /∈ P1 ∧ v2 /∈ P2 then
19 Add (v1,v2) to MCS(p1, p2) such that fp(v1) = v2;
20 p1← v1 and p2← v2;
21 Update MC S ;

22 else if (v1 ∈ P1 ∧ v2 /∈ P2)∨ (v1 /∈ P1 ∧ v2 ∈ P2) then
23 Construct MCS(v1,v2) with f : {v1, ṽ

c1
1 }→ {v2, ṽ

c2
2 } such that

f (v1) = v2 and f (ṽc1
1) = ṽc2

2 ;
24 Add MCS(v1,v2) to MC S ;

25 else if MC S P = /0∧MC S C = /0 then
26 Construct MCS(v1,v2) with f : {v1, ṽ

c1
1 }→ {v2, ṽ

c2
2 } such that f (v1) = v2 and

f (ṽc1
1) = ṽc2

2 ;
27 Add MCS(v1,v2) to MC S ;

28 else
29 MC S ′

P = {MCS(p1, p2) ∈MC S P | v1 /∈ P1 ∧ v2 /∈ P2 };
30 MC S ′

C = {MCS(u1,u2) ∈MC S C | ṽ
c1
1 /∈U1 ∧ ṽc2

2 /∈U2 };
31 if MC S ′

P = /0∧MC S ′
C 6= /0 then

32 for MCS(u1,u2) ∈MC S ′
C do

33 Add (ṽc1
1 , ṽc2

2) to MCS(u1,u2) such that fc(ṽ
c1
1) = ṽc2

2 ;
34 u1← ṽc1

1 and u2← ṽc2
2 ;

35 Update MC S ;

36 else if MC S ′
P 6= /0∧MC S ′

C = /0 then
37 for MCS(p1, p2) ∈MC S ′

P do
38 Add (v1,v2) to MCS(p1, p2) such that fp(v1) = v2;
39 p1← v1 and p2← v2;
40 Update MC S ;

41 else if MC S ′
P 6= /0∧MC S ′

C 6= /0 then
42 MCS(p1, p2)←MCS(u1,u2)∪MCS(p1, p2), ∀MCS(p1, p2) ∈MC S ′

P
and ∀MCS(u1,u2) ∈MC S ′

C ;
43 Update MC S ;

44 h← h−1;

45 return MCS(τ1,τ2) with f : V ′1 →V ′2

14 Chao Liu and Mark Yim

can be added to any MCS(p1, p2) or (ṽc1
1 , ṽc2

2) can be added to any MCS(u1,u2).
MC S is updated according to different conditions and the special one is that
when both MC S ′

P and MC S ′
C are not empty, we have to merge MCS(u1,u2)

and MCS(p1, p2) with all possible combinations.
Line 44: Update h and, in the next iteration, the one-level higher modules will be

compared to update MC S . The last group of modules the algorithm compares are
those with depth equal to one.

Line 45: In the end, there will be multiple MCS(τ1,τ2) ∈MC S and multiple
MCS(q1,q2) ∈MC S such that (τ1,τ2) ∈ MCS(q1,q2). Among all these candi-
dates, the one covering maximum number of modules is the solution of MCS(τ1,τ2)
with corresponding mapping f : V ′1 → V ′2. If the roots of both two given configura-
tions are unique, then they are isomorphic if V ′1 = V1 (obviously V ′2 = V2) and not
isomorphic if V ′1 6=V1 (namely V ′2 6=V2).

This algorithm can be improved to be more efficient for matching and map-
ping task. When checking v1 ∈ V1 with d(v1) = h, if ∀v2 ∈ V2 with d(v2) = h,
F((ṽc1

1 , c̃′1),(ṽ
c2
2 , c̃′2)) is not true, then these two configurations cannot be isomor-

phic and the algorithm can stop or continue with next candidate. This algorithm can
solve the matching and mapping problem in time O(|E1|2) or O(|V1|2) for the worst
case. In reality, the number of connectors a module has is usually small, so the time
for a large number of modules should be much smaller than the worst case.

6 Experiments

The integral algorithm is implemented in Python. The SMORES configuration used
in this experiment is a walker with a manipulator shown in Fig. 6. The corresponding
graph representations of them are shown in Fig. 7. This is a special configuration that
has a lot of symmetric parts. For example, the left legs and right legs are symmetric
and the front legs and the back legs are also symmetric.

Fig. 6 Walker configuration
with different labels. (a)
is the configuration in our
library, and (b) is the new
configuration to recognize.

(a) (b)

We first run Algorithm 1 to discover all the connections in this configuration
shown in Fig. 6b. The sequence to discover all the connections is connect(0,1)→
connect(0,4)→ connect(0,12)→ connect(1,11)→ connect(1,3)→ connect(4,8)
→ connect(12,5)→ connect(11,6)→ connect(3,7)→ connect(3,2)→ connect(6,
13)→ connect(2,9)→ connect(7,10).

Configuration Recognition with Distributed Information for Modular Robots 15

Fig. 7 Walker configuration
graphs. (a) is configuration in
our library, and (b) is the new
design.

1 0 2

4 8

5 9

6

7

10

11

3

12

13

T
T

TT

T

T

T

T

T

T

T

T

T

R

R

RL

B B

T

L

B B B

B

L

(a)

3 1 0

2 4

9 8

7

10

12

5

11

6

13

T
T

TT

T

T

T

T

T

T

T

T

T

R

R

RL

B B

T

L

B B B

B

L

(b)

Then the graph G = (V,E) can be built based on these connections. With
G = (V,E), the root and all CNv(c) for v ∈ V and c ∈ C can be computed by Al-
gorithm 2 and the root module is Module 1. Some preliminary tests can be imple-
mented to filter most of the configurations in the library and the one shown in Fig. 6a
is the closest one. The graph representation Ĝ = (V̂ , Ê) (Fig. 7a) rooted with respect
to the corresponding root module (Module 0), all connection information and all
CN values are stored in the library. Then run Algorithm 3 to match this new config-
uration G = (V,E) to Ĝ = (V̂ , Ê) and map each module v ∈V to v̂ ∈ V̂ . Since there
are many symmetric parts, the mapping between G and Ĝ is not unique. By our
algorithm, we can get all isomorphic mappings f : V → V̂ . For this example, there
are eight different mappings in total and one of them is {10→ 5,7→ 4,3→ 1,9→
7,2→ 6,1→ 0,8→ 9,4→ 8,0→ 2,5→ 11,12→ 10,13→ 13,6→ 12,11→ 3}.

7 Conclusion

We develop and implement an efficient algorithm for modular robot systems to do
configuration recognition automatically. A new configuration can be discovered by
use of local communication among modules and a graph representation can be gen-
erated. Then its root module(s) and all CN values are computed using dynamic
programming. Each configuration in the library contains its rooted graph with re-
spect to its root module, all connections and all CN values. Matching and mapping
problem is solved by searching MCS and, if this new configuration is isomorphic
to some configuration in the library, all the mapping results will be computed. The
algorithm can be adapted to other modular systems easily as long as local commu-
nication among modules is supported and equivalent connections can be defined.

The future work will focus on the optimal mapping for modular robots since mul-
tiple mappings may exist. In addition, this algorithm should be helpful for reconfig-

16 Chao Liu and Mark Yim

uration planning to find the maximum overlapping between the initial configuration
and the goal configuration. This will also be part of our future work.

Acknowledgements The authors would like to acknowledge the support of the National Science
Foundation under Grants CNS-1329620 and CNS-1329692.

References

1. Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.:
Modular self-reconfigurable robot systems: Grand challenges of robotics. IEEE Robotics &
Automation Magazine 14(1), 43–52 (2007)

2. Stoy, K., Brandt, D., Christensen, D.: Self-Reconfigurable Robots. The MIT Press, Cambridge,
MA (2010)

3. Park, M., Chitta, S., Teichman, A., Yim, M.: Automatic configuration recognition methods in
modular robots. The International Journal of Robotics Research 27(3-4), 403–421 (2008)

4. Chen, I.M., Burdick, J.W.: Enumerating the nonisomorphic assembly configurations of modu-
lar robotic systems. In: Proceedings of 1993 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS ’93). vol. 3, pp. 1985–1992 (July 1993)

5. Shiu, M.C., Fu, L.C., Chia, Y.J.: Graph isomorphism testing method in a self-recognition
velcro strap modular robot. In: 2010 5th IEEE Conference on Industrial Electronics and Ap-
plications. pp. 222–227 (June 2010)

6. Zhu, Y., Li, G., Wang, X., Cui, X.: Automatic function-isomorphic configuration recognition
and control for ubot modular self-reconfigurable robot. In: 2012 IEEE International Confer-
ence on Mechatronics and Automation. pp. 451–456 (Aug 2012)

7. Butler, Z., Fitch, R., Rus, D., Yuhang Wang: Distributed goal recognition algorithms for mod-
ular robots. In: Proceedings 2002 IEEE International Conference on Robotics and Automation
(Cat. No.02CH37292). vol. 1, pp. 110–116 (May 2002)

8. Castano, A., Will, P.: Representing and discovering the configuration of conro robots. In:
Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat.
No.01CH37164). vol. 4, pp. 3503–3509 (May 2001)

9. Baca, J., Woosley, B., Dasgupta, P., Nelson, C.A.: Configuration discovery of modular self-
reconfigurable robots: Real-time, distributed, ir+xbee communication method. Robotics and
Autonomous Systems 91, 284 – 298 (2017)

10. Tosun, T., Davey, J., Liu, C., Yim, M.: Design and characterization of the ep-face connector.
In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). pp.
45–51 (Oct 2016)

11. McColm, G.L.: On the structure of random unlabelled acyclic graphs. Discrete Mathematics
277(1), 147 – 170 (2004)

12. Hou, F.: Self-Reconfiguration Planning for Modular Robots. Ph.D. thesis, University of South-
ern California, Los Angeles (2011)

