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Abstract— Variable topology truss (VTT) is a new class of
self-reconfigurable robot. A variable topology truss can change
both its shape and its topology so that it can be reconfigured
into various structures with respect to different environments
and tasks. It is a significant challenge to control modular robot
systems due to the complexity of its configuration and high
dimensionality of its state making it difficult to avoid self-
collision. We present a new research direction to do shape
morphing for variable topology trusses. It is modeled as a
multi-agent system with each agent being a controlled node
in the truss. A new approach to compute the collision-free
configuration space for each controlled node is provided and
some future work is discussed.

I. INTRODUCTION

The variable topology truss is a new type of self-
reconfigurable modular robots. Comparing to movable truss
structures like the variable geometry truss (VGT) [1], vari-
able topology trusses can not only change its shape by
changing the length of the truss members, but also have the
additional capability to change its topology by merging or
splitting nodes [2]. Hence, the variable topology truss system
has both the force and kinematics benefits of VGTs and
the versatility of self-reconfigurable robots [3]. For example,
the robot can reconfigure itself from a dynamic rolling gait
configuration into a robust support structure for shoring.

VTT systems are composed of edge modules which in-
clude both the linear actuator and two ends that can dock
with other ends [2]. One of the constraints that guarantees
the controllability of a VTT system is that the topology of
the modules should nominally form a statically determinate
truss. As a result every node has at least three members
attached. In addition, a VTT system requires at least 18
members in order to reconfigure [2], thus motion planning
for these systems can have very high dimensionality and the
obstacle space can be very complicated to deal with.

II. RELATED WORK

The variable topology truss was first introduced in [4],
which describes the hardware and challenges associated
with the planning, control and implementation. A modified
retraction-based RRT algorithm was introduced for VTT
motion planning in [3]. Our work differs from this work in
that we model the truss as a multi-agent system and explicitly
compute the collision-free space for each agent. Then we
can coordinate these agents for different motion tasks rather
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than sampling in a very high-dimensional space. A shape
morphing algorithm for linear actuator robots (LARs) is
presented in [5]. While the robots are actually a mesh
graph topology, the obstacle space caused by self-collision
is straightforward and, for most shape morphing tasks, there
is no need to consider self-collision. For variable topology
truss systems, the configuration can be in complicated shapes
and self-collision can happen frequently.

There has been extensive work on control and planning
for multi-agent systems in which each agent is usually a
vehicle. Many techniques have been developed to control
groups of robots, such as inter-robot collision avoidance [6],
dimensionality decrease [7], navigation functions for mul-
tiple vehicles [8] and with specified proximity constraints
maintenance [9]. Although the constraints and obstacles in
a variable topology truss are usually more complicated, it is
promising to solve this shape morphing problem as a multi-
agent system.

III. SHAPE MORPHING PROBLEM

The structure of a variable topology truss can be modeled
as an undirected graph G = (V,E) where V is the set of
vertices of G and E is the set of edges of G: each member
can be regarded as an undirected labeled edge e ∈ E of the
graph and every intersection among members can be treated
as a vertex v ∈ V of the graph. Every v ∈ V has two
properties: ID and Pos where ID is used to label the vertex
and Pos is used to define the Cartesian coordinates of the
vertex namely v[Pos] = [vx, vy, vz]

ᵀ ∈ R3. In this way, the
state of a member is fully defined by Pos properties of its
two vertices written as e = (v1, v2) where v1 and v2 are
two vertices of edge e. The shape morphing problem can be
stated: change every v [Pos] where v ∈ V̂ ⊆ V from its
initial position v [Pos]i to its goal position v [Pos]g without
changing the topology of a VTT. During the motion process,
some constraints have to be maintained, such as the rigidity
of the whole truss and collision avoidance. In this multi-agent
system, each node v ∈ V̂ is an agent and the challenge is
to coordinate all v ∈ V̂ navigating in this variable topology
truss.

A. Collision-free Space

The collision-free space for each agent (controlled node)
v is denoted as Cfree(v). For simplification, the nodes are
considered to be points and members are treated as lines.
The basic case is considered first. In the basic case, there
are only two edges disconnected with each other, as shown
in Fig. 1a. Node v4 is the controlled node.
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Fig. 1. (a) The Basic Model and (b) Collision-free Space for the Basic
Model

As shown in Fig. 1b, in this case, v4 can move to almost
anywhere as long as its path does not intersect with a
semi-plane shaped obstacle, the red region in Fig. 1b. This
obstacle is called the obstacle plane and formed by the
the member (v1, v2), as well as two rays. One of the rays
starts at the position of v1 and goes in the direction of
v1 [Pos] − v3 [Pos]. The other ray starts at the position of
v2 and goes in the direction of v2 [Pos]−v3 [Pos]. In short,
this obstacle plane is defined by the fixed member (v1, v2)
and the neighbor node v3 of controlled node v4.

For a controlled node v in a VTT, let N (v) denote
the neighbors of node v and Ev represent the members
connected with v. For v, the collision could occur if and
only if any e ∈ Ev collide with any e′ ∈ E \ Ev , which is
exactly the same as the base model described above, namely
node v can move freely as long as its path does not intersect
with any obstacle plane formed by any combination from the
set N × (E \ Ev).

Therefore, for any truss structure, there are only two
possibilities for the collision-free space. First, if all the
obstacle planes do not divide the whole Cartesian space into
separate subspaces, then the collision-free space of a node is
almost all the Cartesian space except some obstacle planes.
This can be illustrated by a tetrahedron.

Fig. 2. All the colored planes form the obstacle space for v1.
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Fig. 3. (a) A VTT Configuration and (b) (c) Different Views of Collision-
free Space for Example Configuration with Colored Planes as Boundaries

The collision-free space of v1 in a tetrahedron is shown
in Fig. 2. It can be seen that, if singularity is not considered,

v1 can reach anywhere in space except the three colored
obstacle planes, which are formed by neighbor node v2 and
member (v3, v4), neighbor node v3 and member (v2, v4) and
neighbor node v4 and member (v2, v3).

And the other possibility is that some of the obstacle
planes divide the whole space into two or more separate
sub-spaces. The collision-free space is the smallest sub-space
that contains the current position of the controlled node. An
example is shown in Fig. 3a, the collision-free space is shown
in Fig. 3b and Fig. 3c. In Fig. 3c the red and orange planes
can extend to infinity both rightwards and upwards. The
green one goes to infinity upwards and yellow one reaches
infinity rightwards. In this case, there are 70 obstacle planes
in total, but the four obstacle planes shown form the smallest
sub-space enclosing the controlled node, indicating that v1
could only move inside this Cfree(v1) and other obstacle
planes have no effect on Cfree(v1) in this configuration.

B. Multi-Agent Planning

Cfree(v) for each agent (controlled node) v can be com-
puted and it can be affected when moving other nodes. There
are two basic problems we need to consider: a) control the
truss to enable v [Pos]g to be inside Cfree(v) and b) avoid
collision during the motion. For a), if v [Pos]g ∈ Cfree(v),
then this agent can be moved directly, otherwise other nodes
need to be moved to enlarge Cfree(v) to include v [Pos]g .
For b), the collision can happen between two agents or
between an agent and the truss.

IV. CONCLUSIONS
We present a new research direction for shape morphing

of variable topology truss. Multi-agent system model is used
to control multiple controlled nodes to navigate in a variable
topology truss. A new approach to compute the collision-free
space for a node is presented and this multi-agent planning
problem is briefly discussed.
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