ModLab UPenn the modular robotics laboratory at the university of pennsylvania

Nick Eckenstein

Nick Eckenstein
Position: Ph.D. Student

Research Interests: Self-Aligning Connectors, Computer Vision for Modular Robots, Novel Mechanisms

Office: Modlab/Main Grasp

Email: neck at seas.upenn.edu

Personal Page




Publications

Projects

Modular Robot Connector Acceptance by Configuration Space Analysis

Attachment and detachment between modules is critical for modular robot reconfiguration, and is a key design area for these systems. By re-purposing the interpretation of a well-known motion planning tool in configuration space obstacles for its encoding of contact geometry, we have developed a method for determining a metric of the region of error tolerance […]

Tactically Expandable Maritime Platform (T.E.M.P.)

We have built a system of shipping container sized robotic boats that can hook onto each other.  We demonstrate the conceptual design of a system that is capable of constructing bridges and various shaped islands that can be made compliant to waves.

X-Face

Docking and undocking are common activities for robots (modular robots in particular). The relative frequency of this operation behooves us to ensure reliable alignment under uncertain conditions. We present a new face geometry that is numerically superior to existing alignment geometries. This geometry is intended for two-dimensional reconfigurable robots.

Factory Floor

The factory floor is an experimental robotic system for the construction of passive robotically-reconfigurable truss structures. The macroscopic goal of this work is to embed autonomous reconfigurability into human-built systems.